学年

質問の種類

物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 高校生

なぜ引き合うとしているのですか。逆で考えた場合符号が違い答えが間違ってしまいます。

53.くたてばねによる単振動〉 図のように、なめらかで十分長い直線状の棒 OP を鉛直に立てて 端を水平な床に固定した。 この棒に, 同じ質量mの穴の開いた小さ い物体A,Bを通した。 物体Aには, ばね定数んの軽いばねをつけ, ばねの他端は棒のO端に固定した。ばねは OP 方向のみに伸縮し,棒 と物体A,Bの間に摩擦はないものとする。さらに, 物体Aのばねと は反対側に質量と厚さの無視できる接着剤で物体Bを接着した。 物体 x=0- 物体B 接着剤 物体A A,Bが押しあうときは物体AとBは離れないが,引きあうときは引きあう力の大きさが接 着剤の接着力以上になると物体AとBは離れる。重力加速度の大きさをgとする。 初めに,ばねはその自然の長さからd だけ縮んで, 物体 A, B はつりあいの位置に静止し ていた。図のように,このつりあいの位置を x=0 とし,鉛直上向きを正とするx軸をとる。 (1) 自然の長さからのばねの縮みd を,m, k, g を用いて表せ。 まず, 接着剤の接着力が十分大きく, 物体AとBが離れない場合を考える。 物体Bをつりあ いの位置から6だけ押し下げ, 静かに手をはなすと, 物体AとBは一体のまま上下に振動した。 (2)この振動の周期を,m, k を用いて表せ。 (3)この振動をしているときの物体A, B の速さの最大値を,m, k, bを用いて表せ。 物体AとBが一体のまま運動しているときの両物体の位置の座標をxとする。また,物体 Aが物体Bから受ける力をTとし, x軸の正の向きをTの正の向きとする。 つまり,Tが 正のときは物体AとBは引きあっているが,Tが負のときは押しあっていることになる。 (4)このとき, 物体Bにはたらく力を, m, g, Tを用いて表せ。 x 軸の正の向きを物体Bには たらく力の正の向きとすること。 (5) 物体A, B の運動方程式を考えることで, Tを,m, k, g,x を用いて表せ。 図 (6) Tをxの関数として, -3d≦x≦ とする。 の範囲でグラフに描け。 ただし, ここではb>3d 次に,接着剤の接着力が小さく, 物体 A, B間の引きあう力の大きさが mg 以上になると, 物体AとBは離れる場合を考える。ただし,離れる瞬間の前後で,物体AとBの運動エネル ギーや, ばねの弾性エネルギーは変化しないものとする。 物体Bをつりあいの位置から6だけ押し下げ,静かに手をはなすと, 物体Bは運動の途中 で物体Aから離れた。 (7)運動の途中で物体Bが物体Aから離れるためには,bはある値 6 以上でなければならな い。 bı を,m, k, g を用いて表せ。 (8) 物体Bが物体Aから離れた瞬間の物体Bの速さを,m,k,g. 6 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

式の立て方はわかるのですが、どうして振動の中心が変わるのかわかりません。教えて頂きたいです🙇

52. <あらい面上で振動する物体の運動〉 ばね定数 質量m 図のように, 水平なあらい床の上に質量mの物 体が置かれている。 物体はばね定数んのばねで壁と つながっている。 右向きにx軸をとり, ばねが自然 の長さのときの物体の位置を原点とする。 次の問い に答えよ。 ただし, 重力加速度の大きさをgとする。 物体を原点より右側で静かにはなす実験を行った。物体を位置 d(> 0) より左側ではなす とそのまま静止していたが,右側ではなすと動きだした。 (1) 物体と床の間の静止摩擦係数μを求めよ。 0 x 物体を位置 x(>d) から静かにはなすと, 物体は左向きに動きだした。 その後, 物体の速 さは位置 x1 (<-d)で初めて0となった。 (2) 物体と床の間の動摩擦係数μ' を求めよ。 (3)物体の加速度をαとして,左向きに運動している物体の位置xでの運動方程式を示せ。 (4) 物体が x から x1 に移動するまでにかかった時間を求めよ。 (5)xo から x1 に移動する間で, 物体の速さが最大となるときの位置と速さを求めよ。 その後, 物体は右向きに動きだし, ある位置 (>d) で再び速さが0となった。 (6)x1 から再び速さが0となった位置に移動する間で, 物体の速さが最大となるときの位置 を求めよ。 (7) 物体の速さが再び0となった位置 x2 を x と x1 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

【物理記述】 物理の記述がどこまで説明すればいいのかわかりません💦例えば新しい力を表す文字を使う時、図に書いていれば説明しなくても良いかなどです、、、他にも記述で気をつけることやこと回答でダメな箇所があったら指摘してくれると嬉しいです🙇‍♀️

1 軽いばねの両端に同じ質量mの物体AとBを取 りつけ, 滑らかな円筒状のガードでばねが鉛直に保 たれるようにして,Bを床の上に置いたところ、ば ねの長さが自然長よりα だけ縮んだ位置 0でAは 静止した。重力加速度を g とする。 (1) ばねのばね定数はいくらか。 また, 床がBか ら受ける力の大きさはいくらか。 B に作用する力 のつり合いより求めよ。 0 a P ZAZ (2)Aを0点よりさらにαだけ下のP点まで押し下げて、静かに放し たところAは振動した。 (ア) 振動中のAの速さの最大値はいくらか。 (イ) 0点を原点とし、 鉛直下向きを正とするx軸をとると, Aの位 置xは放してからの時間とともにどのように変わるか。 x をtの 関数として表せ。 (3) はじめにAを0点より押し下げる距離を6にして運動させたとき Aの振動中にBが床から離れて上方に動き出さないためには, bの 値はどれだけ以下でなければならないか。

回答募集中 回答数: 0
1/72