学年

質問の種類

数学 高校生

質問です!大問103のように置換(x−1=tと置くと…みたいな)しないといけない問題と普通に置換しなくてもできる問題の2種類があるんですけど、置換する場合の見分け方ってありますか?

第2章 極限 第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) = α, limg(x) =β とする。 1 x-a xがαに近いとき、常に f(x)≦g(x) ならば α≦β 2 xがαに近いとき,常に f(x)≦h(x)≦g(x) かつα=B ならば limh(x)=α 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 注意2を「はさみうちの原理」 ということがある。 3 limf(x) =∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 lim x0 sinx =1, x lim -1 (角の単位はラジアン) x-0 sinx STEPA ■次の極限を求めよ。 [ 104, 105] □ 104(1) lim 1-cos 3x x→0 x2 1 *105 (1) limxcos x 0+x 第2節 関数の極限 31 0 x01−cosx sinx2 (2) lim- 1+sinx (2) lim x 例題 7 中心が0, 直径ABが4の半円の弧の中点をMとし,Aから出た光線 が弧 MB上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQの長さを0で表せ。 (2)PがBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線が弧 MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ 求めるものを式で表し, 解答 (1) 右の図において sin 0 0 などの極限に帰着させる。 ∠OPQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 2 *(2) lim (3) lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると, OP=2 であるから ✓ 99 次の極限を調べよ。 (1) lim cos- ■次の極限を求めよ。 [ 100~103] 100 (1) lim- x0 OQ 2 sin sin(л-30) 2sin0 また, sin (π-30)=sin30 であるから 0Q=- sin 30 M 30 Q B (2)PがBに限りなく近づくとき, 0 +0 である。このとき sin2x x0 1−cosx 2sin0 2 sinė 30 2 lim OQ= lim -= lim 0 +0 e+o sin30 -+0 3 0 sin 30 3 よって,Qは線分 OB上のOからの距離にある点に近づいていく。圏 □ 106 半径αの円の周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA sin4x xC sin2x *(2) lim x-o sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □102"(1) lim COS X sin2x (2) lim- (3) lim x皿 4 に限りなく近づくとき, PQ の極限値を求めよ。 ただし, AP は ∠AOP AP (0∠AOP</V)に対する弧AP の長さを表す。 ax+b 1 1 2x 107 等式 lim が成り立つように, 定数 α, bの値を定めよ。 COS X 2 103*(1) lim tan x° x0 x *(4) lim sin x x1 x-1 1−cosx t- sinx STEPB *(2) lim X-1 sin(x-x) x一π (5) lim x→0 sinx sin(sinx) (3) limx- lim (x-4)tan.x x- xn (6) limxsin X8

解決済み 回答数: 1
数学 高校生

大問105だけ、はさみうちの原理使ってるんですけど、使うときと使わない時の判断ってどうやってるんですか?式のどの部分を見たら「はさみうち」使って解く!って分からんですか?

第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) =α, limg(x) =β とする。 xa pix 1 xがαに近いとき,常に f(x) ≦g(x)ならば a≦β 2xがαに近いとき,常に f(x) (x)g(x) かつα=β ならば limh(x)=a 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 ■ 次の極限を求めよ。 [104, 105] 1-cos 3x □ 104(1) lim x→0 x2 1 *105(1) limxcos 0+x x 第2節 関数の極限 31 0 (2) lim sinx2 x01−cosx (2) lim 1+sinx XII∞ x 第2章 極限 注意2を「はさみうちの原理」 ということがある。 例題 3 limf(x)=∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 sinx lim x0 x x =1, lim -1 (角の単位はラジアン) x-0 sinx STEPA 中心が 0, 直径 ABが4の半円の弧の中点をMとし, Aから出た光線 が弧 MB 上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQ の長さを0で表せ。 (2) PBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線か MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ sin O 求めるものを式で表し、 などの極限に帰着させる。 解答 (1) 右の図において ✓ 99 次の極限を調べよ。 ZOQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 M 2 (1) lim cos- *(2) lim (3)lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると,P=2 であるから 30 0 Q B ■次の極限を求めよ。 [ 100~103] ✓ 100 (1) lim x→0 sin 4x XC sin2x *(2) lim x-0 sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □ 102(1) lim COS X x-Sin2x (2) lim- sin2x (3) lim x01−cosx 103*(1) lim tan x X10 x *(4) lim- sinлx x-1 x-1 1−cosx t- sinx STEPB *(2) lim X→π OQ 2 sin O sin(-30) また, sin (π-30)=sin30 であるから 2sin OQ= sin 30 (2)PがBに限りなく近づくとき, 0 +0 である。 このとき 2 sin 2 sin 3 2 lim OQ= lim lim 8+0 o sin 30 0-40 3 0 sin 36 3 よって,Qは線分 OB上の0からの距離にある点に近づいていく。圏 □ 106 半径αの円周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA PQ に限りなく近づくとき, AP の極限値を求めよ。 ただし,Pは ∠AOP (0<< AOP < 1)に対する弧AP の長さを表す。 sin(x-7) x-π (3) lim x-- tanx xn ax+b 1 sin(sinx) (5) lim x→0 sinx 1 107 等式 lim (6) limxsin COS x 2x が成り立つように, 定数a, b の値を定めよ。

未解決 回答数: 1
数学 高校生

(2)の0<1/x<1の式に 問題の式を変形させずに入れてはさみうちの原理を使うことは可能ですか?またできないのであればなぜできないのか教えて欲しいです

=10gsx1 =10g3√x 3x-1 CHART 分母分子に 3x-1 を掛 √xで割る。 (1) 不等式 [3]≦3x < [3x]+1が成り立つ。 解答 x0 のとき,各辺をxで割ると [3x] 1 ここで,3< + から x x (s) [3x] 関西大 基本例題 52 関数の極限 (4) *** 2+3x+x) 基本事項 4. 基本 50 (1) lim x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 ・はさみうちの原理 89 00000 [zais (2) lim(3*+5*)/ 介 p.82 基本事項 基本 21 利用して,まず 針 。 分母分子を 形 することに 込むのもよい。 818 極限が直接求めにくい場合は、 はさみうちの原理 (p.825 ①の2) の利用を考える。 (1) n≦x<n+1 (n は整数) のとき [x]=n すなわち [x]≦x<[x]+1 よって [3x]3x < [3x]+1 この式を利用してf(x)≦ [3x] -≦g(x) x (ただしlimf(x) = limg(x)) となる f(x), g(x) を作り出す。 なお、記号 []はガ →00 ウス記号である。 (2) 底が最大の項でくくり出すと352) 5(/)+112 (2)の極限と {(g)+1} 力な にや 実で学 2 2章 ⑤関数の極限 はさみうちの原理を利用する。x→∞であるから,x>1 すなわち <1と考 えてよい。 の極限を同時に考えていくのは複雑である。そこで, 0 < x 求めにくい極限 不等式利用ではさみうち 203 [3x] [3x] ≤3< 1 + x x x 3-1 [3x] x XC よって ≤3 x x はさみうちの原理 巻 f(x)≦h(x)≦g(x)で limf(x)=limg(x)=α →∞ x→∞ O lim (3-1) =3であるから (2)(3)1 x→∞であるから,x10 < 1/2 <1と考えてよい。 x このとき(23)+1}{(1) +12 <{(1/3)+1} すなわち 1<{(3³)*+1}* <(3)*+1 lim(2/2)+1} =1であるから lim [3x] lim- mil ならばlimh(x)=α =3 x→∞ x→∞ x Anie 3x 底が最大の項でく くり出す (*) A>1のとき,a<b ならば A°<A° 3 +1>1であるか ら, (*) が成り立つ。 -ら、 する。 よってtim(3*+59) - im5(2)' +1-3-1-5 x ・ら から

解決済み 回答数: 1
数学 高校生

次の問題で思考プロセスが青いところから下が何がしたいのかよくわからないのですがどなたか解説お願いします🙇‍♂️

思考プロセス an= = (+)" cos —— nx 2 COS nπとする。無限級数Σam の和を求めよ。 <ReAction 無限級数の収束 発散は,まず部分和 Sm を求めよ 例題111) 規則性を見つける YA n=3m-2 αの の部分は, n= 1, 2, 3, のとき 1 1 1 2 2 2' 2' をくり返す。 |場合に分ける ={1-(1)}/{1-(1)}+//{1-(1)} 3m =--{1-(/)} n→∞ のとき, m→∞ となるから 2 lim S3 = 7 2 n=3m 7 ここで. cos 1 より 10 1x 2 n=3m- 0≤ COS lim 12-00 1 (1/2) = 0 より, はさみうちの原理より an → 0 一方, Ssm-1= Ssm-αsm, Ssm-2=Ssm-1-asm-1 であり, In=3m n=3m-1(mは正の整数) の場合に分けて考える。 In=3m-2 (ア) S3m = a1+a2+as+..+α3 =(a1+a+…+α3m-2)+(a2+α+... +α3-1)+(as+a+..+α3m) n→8 → すべて一致すれば (イ) S3m-1= S3m-a3m= n→∞ その値が24円 (ウ) S32S3-1-43m-1=| n→∞ an n=1 解 S= ak とおくと, n=3mm は正の整数)のとき 数列{cos 2 MTが 3 12 4 = COS (2/2) COS2 1 2' 2 1 1,... の (1/2) くり返しになることに着 目して場合分けする。 cos COS4 Sam-cos+() cos+(½) 8 COS +(1/2)*cos 37 + (12)² cos 107 COS COS -π+ 3 +・・・+ 3m- ・1/11/2+(2)+....+(1/1) ***} =- +・・・+ (4)+ 3m COS2m² //{(1)+(2)+....+(1/1)} +・・・+ 3m-1 各{}内は,すべて 公比 t +{(12)+(2)+..+(1/2)}会 (12),数の等 3m 3 12/{1-(1/2)^} (1){1-(1)} 1 1 2 1-(1/2) 3 2 1 3 比数列の和である。 (1/2){1-(1)} + 1 3 no のとき αsm 0, αsm-10 であるから lim S3m-1=lim S3m-2 = lim Ssm したがって 2 19L-00 lim S. = (+) cos nx = COS Point 無限級数の計算の順序 2 7 例題116のPoint で学習したように, 無限級数では, 勝手に項の順 けない。 そのため, 結果は同じであったとしても、 次のように解答を 4 COS- acosx+(1) cosx+(2) cos = COS n=1 2 3 3 COS 14 +(1/2) cos/1/12+(1/2) 1 十 ={12+(1/2)+(2)+...}cos/3+{(1/2)+(1/2)+(- 1 2 (/)+ 1 8 3 +(+) cos+(4) 00810+ COS COS 3 COS 1 316 36 123 12 + ( 12 +{(1/2)+(1/2)+1 (-1/2)+ (2) 1 117 無限級数 1 nπ sin² 2 の和を求めよ。

解決済み 回答数: 1
1/53