学年

質問の種類

数学 中学生

解説を見ても分かりません。どうか教えてください🙏

第2章 関数 9 [1] のように 2点 A (8, 0). B(0.8) があり、 分 OA. OB を半径とするお うぎ形OAB がある。 また、 点 P(1, 0) と, AB 上に座標が 1である点Qがある。 なお, ある点の座標と 座標がともに整数であるとき. その点を格子点という。 [2] のように. おうぎ形OAB と直線 12/2x+4がある。 このとき [2] の灰色をつけた部分の 内部および周上にある 格子点の個数を求めな さい。 [1] pa-37 このとき、次の(1)~(4)の各問いに答えなさい。 線分PQの長さを求めなさい。 [ 2] B(0,8) (2) 両端の点を含む線分PQ上にある格子点の個数を求め ださい。 おうぎ形 OAB の内部および周上にある格子点の個数 を求めなさい。 ya- 10 OP(1,0) A (8,0) U B(0,8) A(8,0) <佐賀県 > 9 (1)3√7 三平方の定理とつき PQ² = 038 - OP²-8²-1²-63 V P (2)8個 (3)58個 (4).38個 【解き方】 (1) PQ=3V7 XO (1) (2) 72 <PQ² < 82 D. 7 <PQ <8 線分PQ上の格子点の座標は0,1,2,3,4,5.6メージ 7だから, 求める個数は8個 x58²1², (3) 点P、Qと同様にして、点P2(2, 0) と, AB 上に座×357 標が2である点Q2. P3 (3,0) と点 Q3, ... とする。 •P2Q2²=0Q22-OP2²=82-22=60 7 <P2Q2 <8 P3Q3²=0Qg2 -OP3²=82-32-55 PQ2=Q^OP²=82-42=48 PsQ52=0Q²2-OP52=82-52=39 また,P'(0, 1) と, AB 上に y 座標が1である点 Q 同様にして、点P'^ (0, 2) AB 上に座標が2である点 Q2. P3 (0,3) 点 Q3,・・・とする。このとき ・OB, OA に関して, 格子点は, 9x2-1=17.⑩ PQ, P'Q' に関して, 既に数え上げた格子点を除いて、 (8-1)x2-1=13...① 以下同様にして、 P2Q2. P2Q2 に関して, (8-2) x2 - 1 = 11….. ② ・P3Qs, P'Q'3 に関して (8-3)×2−1 = 9... ③ ・P4Qs, P'Q' に関して (74)×215... ④ PsQss P'Q's に関して (7-5)×21=3...⑤ ⑩〜⑤より 求める格子点の個数は, 17 + 13 + 11 + 9+5+ 3 = 58 (個) y BC (4) おうぎ形OAB の内部お よび周上にある格子点のう ち, 灰色がついていない部 7<P3Q3 <8 6<P4Q₁ <7 6 <PsQs <7 37- 96 関心の図形との融合問題 210) P1 P P' O P P₂P,P.P は軸上の点である。 (2016 問いに答えなさい。 ださい。 分は直線y=- 1x +40 2 下側でその部分の格子点の 個数は, x=0,1のとき,それぞ れ4 (個) よって, 8個 x=2,3のとき,それぞ よって 6個 れ3(個) z= 4,5のとき, それぞ よって 4個 れ2(個) x=6,7のとき, それぞれ1 (個) x=8のとき,0個 したがって, 8+ 6 +4 + 2+ 0 = 20 (個) 以上より, 灰色の部分の格子点の個数は, 58-20=38(個) n上をA→C をPとする。 に平行な直線と直線 積をSとする。 のときSの値を の座標をすべて y=- 1-1212x+4 よって2個 関数 フ 点 図 る直 として点 の面積と という CI HEW 上に 面積が

回答募集中 回答数: 0
数学 高校生

⑵の色の選び方と⑶の色の選び方が何で違うのかと、なんでそのような求め方になるのか教えて欲しいです!!

率 _392 基本事項 並べて固 子音という。 ....★ の方針。 同様に確から 前提にあるた のでも区別し 母音 利用。 並べる。 = 180 (通り) 根元事象が 列も同じ程 でも区別し 38 組合せと確率 本例題 黄の札が4枚ずつあり、どの色の札にも1から4までの番号が1つずつ る確率を求めよ。 全部同じ色になる。 かれている。 この12枚の札から無作為に3枚取り出したとき,次のことが起 色も番号も全部異なる。 [埼玉医大 ] 率 109 EX29\ (1)~(3)の各事象が起こる場合の数α は, 次のようにして求める。 場合の総数Nは, 全12枚の札から3枚を選ぶ 組合せ 123通り 積の法則 (I) (同じ色の選び方)×(番号の取り出し方) (2) 番号が全部異なる。 (②2) 異なる3つの番号の取り出し方) (色の選び方) 同色でもよい。 (3) 異なる3つの番号の取り出し方) ( 3つの番号の色の選び方) 12枚の札から3枚の札を取り出す方法は 赤, 青, 黄のどの色が同じになるかが その色について,どの番号を取り出すかが よって 求める確率は 3C1×4C3_ 3×4 12C3 220 よって 43 札を選ぶ 「順序」にも注目して考えると 色の選び方は 31, 番号の順序は4P3 で 3C1X4C3 12C3 a N 123 通り 3C1 通り 4C3通り 3 55 3通り 取り出した3つの番号を小さい順に並べ, それに対し, 3色を順に黄赤青 対応させる,と考えると,取り出した番号1組について、色の対応黄青赤 が3P3通りある。 /p.392 基本事項 6 220 55 4C3X3P3 4X6 12C3 (3) 1 2 3 赤青 3黄 赤黄青 青 赤 黄 青黄赤 (2)どの3つの番号を取り出すかが そのおのおのに対して, 色の選び方は3通りずつある3つの番号それぞれに対 し,3つずつ色が選べる から、番号が全部異なる場合は 4C3×38通り から 3×3×3=33 4C3X33 4×27 27 よって 求める確率は 12C3 220 55 (3) どの3つの番号を取り出すかが Cg 通りあり、取り出赤,青,黄の3色に対し, した3つの番号の色の選び方が 3 P3通りあるから、色も 1 2 3 4 から3つの数 番号も全部異なる場合は 3×3P3通り よって求める確率は 397 | (1) 札を選ぶ順序にも注目 して考えてもよい。 下の 参考 を参照。 P通り ⑥事象と確率 を選んで対応させると 考えて, 1×4P3 通りとし てもよい。 N = 12P3=12C3×3! a=3C1×4P3=3C1×4C3×3! となる。同様に考えて (2) a=4P3×33 (3)a=P3×3P3 2章 2 [北海学園大 ] 1組のトランプの絵札 (ジャック, クイーン, キング) 合計12枚の中から任意に4 の札を選ぶとき、次の確率を求めよ。 スペード, ハート, ダイヤ, クラブの4種類の札が選ばれる確率 ジャック, クイーン, キングの札が選ばれる確率 スペード クラブの4種類の札が選ばれ, かつジャック, ク n 409 EX 30 、

回答募集中 回答数: 0