学年

質問の種類

数学 高校生

写真の質問に答えてください!

64 発展例題 |2次方程式x-mx+2m=0 が整数解のみをもつような定数mの値と,そ のときの整数解をすべて求めよ。 方程式の整数解 (=整数の形にする ① 2つの整数解を α, β (α≦β) として、 解と係数の関係を利用。 α+β=m, aβ=2m ②①の2式からmを消去し, ()() =整数の形を導く。 ③②で導いた式を,右辺の整数の約数を考える方法で解く。 4,B,Cが整数のとき, AB=C ならば A,BはCの約数 CHART GUIDE 解答 2次方程式x-mx+2=0が2つの整数解 α, β(a≦B) を | ←α=β のときは,重解を もっとすると、解と係数の関係から α+β=m, aβ=2m もつ。 を消去すると aß-2a-28-0 22 から ゆえに すなわち ...... aβ=2(a+β) a(B-2)-2(B-2)-4=0 (a-2)(B-2)=4 よって Bは整数であるから,α-2, β-2 も整数である。 より、α-2≦B-2 であるから,α-2, B-2 の値の組は (a-2,B2, -2,-2),(1,4), (22) ですか? ist (a, B)=(-2.4.2009 このα, βの値の組に対するmの値は、①からそれぞれ m=-1, 0,9,8 したがって求める の値とそのときの整数解は m=-1 のとき x=-2, 1 m=0 のとき x=0 m=8のとき x=4 m=9のときx=3,6 ←mも整数である。 ←一般にxy+ax+by =(x+b)(y+α)-ab 左の変形では, x=α, y=β, a=-2,b=-2 としている。 ←4の約数は 2章 ←m=a+β ±1, ±2, ±4 負の数も忘れないように。 発展学習 ←m=0,8のときは重解。 2次方程式の整数解を求める問題の中には, 「整数解ならば実数解であるから,判別式 D≧0」によって,係数の値の範囲をしぼり込んでいく考え方が有効な場合もある。 ただし、上の例題では, 判別式 D=(-m)²-4・2m≧0から m≧0,8≦m となり, [mの値をしぼり込むことはできない。 ] 64 2次方程式x+(m-2)x+10-m=0が整数解のみをもつような定数 m の値

未解決 回答数: 1
数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0