学年

質問の種類

数学 高校生

円に接する放物線 画像一枚目の(1)の模範解答について分からないので教えていただきたく思います。 画像一枚目と二枚目はほとんど同じ問題なのですが、異なる参考書の模範解答です。 どちらも原点の1点のみ接するとき、原点と0以下の実数解をもつと考えて解答をだしていますが、どうし... 続きを読む

プロセス 放物線y=21212x① と x+(yd) = r (a>0,r> 0)…. ② につ いて、次の条件を満たすようなαの値の範囲を求め、 rをの式で表せ。 (1) 放物線 ① と円 ② が原点0で接し、かつ他に共有点をもたない。 (2) 放物線 ① と円 ② が異なる2点で接する。 見方を変える 去 /①② を連立 についての4次方程式 〔別解1] 次数が高い についての2次方程式 [本解〕 次数が低い 対応を考える ↓ 解は共有点のy座標を表す。 図形はy軸対称であり、解と共有点 の対応は右の図のようになる。 条件の言い換え yについての2次方程式が (1) y ≧0 において, 解がy=0 のみ (2) y>0 において、 重解をもつ 1①より,x²= 2y であり y≧0 ②に代入すると 2y+(y—a)² = y² y²+2(1—a)y+(a² − r²) = 0 (1) 題意を満たすのは, ③ が y = 0 を解にもち,y>0 の範囲に解を もたないときである。 y = 0 が解であるから a² r² = 0 > 0, r>0であるから r = a このとき, ③は y2+2(1-α)y=0 y{y+2(1-a)}=0/ よって、 ③のy=0 以外の解は/ y=2(a-1) (1) 2(a-1)≧0より 0<a ≤1 したがって 0<a≦1,r= a y>0 の解は 共有点2つに対応 Action》 円と放物線の共有点は, 連立してx を消去せよ : y=0の解は 接点1つに対応 O 1 x (2) 2 YA 2 xを消去する。 yの範囲は y≧0であ る。 共有点が原点のみである から, y ≧0 においては、 y = 0 しか解はない。 また,このとき, グラフ の対称性から,原点で接 するといえる。 これが正であってはいけ ない。 *2 a-1) = 0 のときも含 まれることに注意する。

回答募集中 回答数: 0
数学 高校生

多項式の除法です。 2xの2乗をX-3で割ることはできないから、-7Xの上に2Xじゃないのでしょうか??

15 10 20 25 5 15 20 5 10 3| 多項式の除法 これまでは, 多項式について,加法,減法,乗法を考えてきた。ここで は, 多項式の除法を考えてみよう。 .81 + =A 整数について,余りを考慮した除法を考えた。 多項式についても、余り を考慮した除法を考えることができる。 まず, 整数の除法を振り返ろう。 例えば,172を7で割ると商は 24, 余りは 4である。 このとき 172 = 7×24 + 4 ← 割る数 × 商 + 余り である。 同じような計算を多項式で行うこと を考えてみよう。 例8 注意 1節多項式の乗法・除法と分数式 問14 2x-1 x-32x²2-7x+5 2x² - 6x 24 7)172 ・(x-3) ×2x 140・・・ 32 ・7×20 多項式 A=2x²-7x+5, 多項式 B=x-3のとき, AをBで 割る計算は次のように考える。 -x+5 -x+3. (x-3) × (-1) 2 28・・・ 4 7x4 最後の行に現れた2は, 割る式x-3よりも次数が低いから, これ以上計算を続けることはできない。 このとき, AをBで割ったときの商は2x-1, 余りは2である という。 上の計算から、 次の式が成り立つことが分かる。 A =Bx (2x-1)+2 割式x+余り ① このような計算では,割る式も割られる式も, 文字xについて降べきの順に整 理しておくとよい。 多項式 3x²+2x+1を多項式3x-4で割り, 商と余りを求めよ。 また、例8にならって, 多項式3x²+2x+1 を ① の形に表せ。 13 1章 章 方程式・式と証明

回答募集中 回答数: 0
数学 高校生

積分の体積の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 226 123 回転体でない体積(ⅡI) 2⑦ 次の問いに答えよ. 12 (1) 定積分 1fpdt を求めよ。 (2) 不等式 z'+y2+log (1+22) log2 ......(*) で表される立体Dにつ いて (ア) 立体Dを平面 z=tで切ることを考える. このとき, 断面が存在 するような実数十のとりうる値を求めよ. (イ)(ア)における断面積をS(t) とする. S(t) をtで表せ. 立体Dの体積Vを求めよ. (ウ) 第6章積分法 精講 (1) 分数関数の定積分は,次の手順で考えます。 ① 「分子の次数<分母の次数」 の形へ ② f(x) ③②の形でなければ、 分母の式を見て 因数分解できれば, 部分分数分解へ (89 因数分解できなければ, tan0の置換を考える (90) (2) 立体Dの形が全くわかりませんが, 122 によれば断面積を積分して求めら れます。 だから立体の形がわからなくても、断面積が求まれば体積は求めら れるのです.そのときの定積分の式を求める作業が(イ)で, 定積分の範囲を求 める作業が(ア)になっています。 1+t2 "'(x) 解 答 (1) Softpdt=f'(1-14ps) at=1-So1tradt 1+t2 ここで, Softpdt において,t=tan0 とおくと 90(1) = S₁³ do = 7 4 -dxの形を疑う (89) 1+t2 t0→1 dt TL 1 do 00-E docosey だから、∫otpad="1+lando cos2d よって,Strat=1- 1+t2 π (2) (ア) (*) z=t を代入して ²+y² ≤log2-log(1+t²) ......① この不等式をみたす実数工、リが存在するこ これが断面が存在す とから, るということ log2-log (1+t²) ≥0 2≥1+t² = 1²≤1 " -1≤t≤1 立体Dの平面 z=t (-1≦t≦1) による断面はxy平面上の不等 式①で表される図形で,これは (半径) が log2-10g(1+1)の円の (イ) 周および内部を表すので 22² +7² {/² S(t)=z{log2-log(1+t)} (→) V=r{log 2-log(1+t²)}dt =2zf"{log2-10g(1+t)}dt =2zlog2-2x(t)'log(1+t)dt =2xl0g2-2x|tlog(1+t)+ 25 24 psdt 21² =4nf1+₁ dt-4(1-4)=(1-x) 4π 1+t2 2 ポイント 演習問題 123 ◆これが z=tで切る ということ 227 <S(t) は偶関数 87 (1) 部分積分 2 注∫_{log2-log(1+t^2)}dt = f_log1fFdtと変形してしまうと 定積分は厳しくなります。 回転体でない体積の求め方は I. 基準軸をとって ⅡI. 基準軸に垂直な平面で切ってできる断面の面積 を求めて ⅢI.ⅡIの断面積を積分する y≧0≦z≦1で表され 4つの不等式x+y-z, る立体Dについて,次の問いに答えよ. (1) 立体Dの平面 z=t による断面の面積S(t) をtで表せ. (2) 立体Dの体積Vを求めよ. 79 第6章

回答募集中 回答数: 0