学年

質問の種類

数学 高校生

数学II恒等式の問題です。 写真の練習21で、恒等式の最高次の係数を比較することは理解しているのですが、この[1]と[2]を記述する意図が分からないので教えて頂きたいです。よろしくお願いします。

この連立力性を解く 練習 f(x) は最高次の係数が1である多項式であり,正の定数a,bに対し,常に @21 f(x2)={f(x)-ax-b}(x-x+2) が成り立っている。このとき,f(x)の次数およびα,bの を求めよ。 HINT f(x) n次式であるとして, 恒等式における両辺の式の次数が等しいことに着目する。 an=0, n=1, n≧2 で分けて考えるとよい。 f(x2)={f(x)-ax-b}(x²-x+2) f(x) をn次式とすると ① とする。 [1] = 0 すなわちf(x)=1のときは明らかに①を満たさず, 不適。 [2] n=1のとき ←① の左辺は 1, 右辺は 3次式 f(x)=x+c(cは定数)とする。このとき,①の左辺は2次 ←f(x2)=x2+c 式である。 a=1のとき, ① の右辺は3次式となるため,不適。 a=1かつ6=cのとき,右辺は0となるため,不適。 a=1かつb≠cのとき,右辺は2次式となる。 このとき (① の左辺) =x2+c (①の右辺)=(c-b)(x2-x+2) b-c≠0であるから, ①を満たす b, cの値は存在しない。 よって、不適。 [2] n≧2のとき ①の左辺は 2 次式で, 右辺は (n+2) 次式である。 ←f(x)-ax-b=(1次式) ←f(x)-ax-b=0 ←f(x)-ax-b=c-b (1) (左辺)=x+2x+4x +8x + 16x -2x-4x4-8x3-16x2 =x-64 よって、等式は証明された。 (2)()=a²x²+a²y²+a²z²+b²x² +c²x²+c²y²+c² z² - (a +2abxy+2bcyz+2caz =ay2+az+62x2+62z -2abxy-2bcyz-2ca (右辺)=dy2-2abxy+b2x2+1 +c2x2-2cazx+a222 左辺と右辺が同じ式になるから, 練習 a+b+c=0のとき,次の等式た ② 23 a² (a+b)(a+c) (6+ + a+b+c=0より, c = -(a+b a² (左辺 = + (a+b)(-b)+( ←この式の1次の項の係 数は b-c -a-b3+(a+b) ab(a+b) したがって,等式は証明され 別解 a+b+c=0 より, a+b=-c,a+c=-b

解決済み 回答数: 1
数学 高校生

(1)についてです。 解答の2行目から3行目のところが理解できません。 解説よろしくお願いします。

38 重要 例題 19 因数分解 (3次式) 00000 (1) α+6=(a+b)-3ab(a+b) であることを用いて,a+b+c-3abc を因数分解せよ (2)x-3xy+y+1 を因数分解せよ。 CHART & SOLUTION 3次式の因数分解 (1) 組み合わせを工夫して共通因数を作る。 まず,'+6について+6=(a+b)-3ab(a+b)を用いて変形すると a+b+c-3abc=(a+b)-3ab(a+b)+c-3abc 次に,(a+b)+c について, a+bを1つの文字とみて (a+b)+c={(a+b)+c}{(a+b)-(a+b)c+c} 基本11 また,-3ab(a+b)-3abc=-3ab(a+b+c) であるから,共通因数a+b+cが現れる。 (2)1=13 と考えると, (1) の結果が利用できる。 まとめ 多項式の積の ができる。 し ことも多い。 ここでは, しながら因 (1) 共通 すべての 例 6c 項の組み 例 (2) まと 例 G 41 (1) a+b+c³-3abc =(a+b)+c-3abc =(a+b)-3ab(a+b)+c-3abc =(a+b)+c-3ab(a+b)-3abc まず, +6 を変形。 3ab が共通因数。 8+1a-(x+ ← A'+c3 =(A+c)(A2-Ac+c^) ← (a+b+c) が共通因数。 +x (x)= ={(a+b)+c}{(a+b)-(a+b)c+c2}-3ab{(a+b)+c} =(a+b+c)(a2+2ab+b2-ac-bc+c)-3ab(a+b+c) =(a+b+c)(a2+2ab+b2-ac-bc+c-3ab) 2002 T ( 2 (2)x3xy+y+1 =(a+b+c)(a+b2+c-ab-bc-ca) 3=x+y+13-3.x.y.1 108 BRE =(x+y+1)(x+y+12-xy-y・1-1・x) =(x+y+1)(x2-xy+xy+1) ← 輪環の順。 113 と考えると, (1) の 結果が利用できる形に 変形できる。 項の組 例 (3)最 2つ以 例 a → x, b→y,c→1と 考える。 “た 例 (4) 例 (5) POINT (1) の結果は利用されることもあるので,公式として覚えておくとよい。 a+b+c-3abc = (a+b+c)(a+b2+c2-ab-be-ca) 例えば、 また,これから,対称式+b+cは, (a+b+c)2=a+b2+c+2ab+2bc+2ca を利用すると,次のように基本対称式で表されることもわかる。 a+b°+c°=(a+b+c){(a+b+c)-3(ab+bc+ca)}+3abc 因な PRACTICE 198 次の式を因数分解せよ。 (1)x+3xy+y-1 (2) x³-8y3-23-6xyz と

未解決 回答数: 0
数学 高校生

この問題の、(ア)の、Nの意味がわかりません💦 あと、495というのはどこから出てきた数字でしょうか??

して証 通り 通り 重要 例題 6 n桁の数の決定と二項定理 (1)次の数の下位5桁を求めよ。 10110 100 (イ) 99100 (2) 2951 を900で割ったときの余りを求めよ。 [類 お茶の水大] 基本1 指針 (1)これらをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると、必要とされ る下位5桁を求めることができる。 (ア) 101100 (1+100)100= (1+102)100 これを二項定理により展開し、各項に含ま れる 10" (nは自然数) に着目して、下位5桁に関係のある範囲を調べる。 (イ) 99100= (-1+100)100= (-1+102) 100 として (1) と同様に考える。 (2) (割られる数) = (割る数)×(商) + (余り) であるから, 2951900で割ったと きの商をM, 余りを とすると,等式 291 = 900M+r (M は整数,0≦x<900) が成 り立つ。2951(30-1)であるから,二項定理を利用して (30-1)を900M+r の形に変形すればよい。 (1) (7) 101100=(1+100) 100=(1+102) 100 =1+100C1×102+100C2×104 +10°×N ☆ax105+5ケかたち =1+10000+495×10°+10°×N ? (Nは自然数 == この計算結果の下位5桁は,第3項,第4項を除いて も変わらない。 1 章 1 3次式の展開と因数分解、二項定理 展開式の第4項以下をま とめて表した。 にした 10"×N (N, nは自然数, n≧5) の項は下位5桁の 計算では影響がない。 ある 解答 ■要素 考える。 よって, 下位5桁は 10001 (イ) 991=(-1+100)’=(-1+102)100 =1-100C×102+100C2×104+10°×M =1-10000+49500000 +10° × M =49490001+10°×M (Mは自然数) この計算結果の下位5桁は,第2項を除いても変わら ない。 よって、下位5桁は 90001 る。 (2) 2951 (30-1)51 =nC₁ = C2 L しれ ...... =3051-51C1×3050+・・・ -51C49×302+51C50×30-1 =302(3049-51C1×3048 +・・・・・・-51C49) +51×30-1 =900(3049-51C1×304+-51C49) +1529 =900(3049-51C1×3048 + - 51C49+1) +629 展開式の第4項以下をま とめた。 なお,99100は 100 桁を超える非常に大 きい自然数である。 900=302 (-1)"は rが奇数のとき が偶数のとき 1 1 1529=900+629 ここで,30%-51 C1×3048 +51C49 +1 は整数であるssp から 2951 を900で割った余りは 629 である。 。 も 練習 (1) 10115 の百万の位の数は「 である [南山大 ]

解決済み 回答数: 1