学年

質問の種類

数学 高校生

この問題がよく分かりません。 何が分からないのかもわかっていないレベルなので 詳しく教えていただけるとありがたいです。 大雑把な質問で申し訳ありませんがお願いします🙇‍♀️

83 数分解できる。 もち 次式×2次式 よ」とい 解すればよい。 の 指針 与式がx、yの1次式の積の形に因数分解できるということは、 (与式)=(ax+by+c)(px+y+z) 例題 47 因数分解ができるための条件 00000 x2+3xy+2y2-3x-5y+kがxyの1次式の積に因数分解できるとき、定数k の値を求めよ。 また、 その場合に、この式を因数分解せよ。 [東京薬大] 基本46 を利用 =0 とおいて解く の公式。 狐の前の2 (0) 解答 を忘れないよう 数の範囲の因数 ら x= -3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 ==3(y-1)±√y2+2y+9-4k の形に表されるということである。 恒等式の性質を利用(検討参照) してもよいが、 こ そこでは,与式を2次式とみたとき, = 0 とおいたxの2次方程式の解の1 次式でなければならないと考えて、その値を求めてみよう。 ポイントは、解がの1次式であれば、解の公式における内がりについての完 平方式(多項式)”の形の多項式] となることである。 P=x2+3xy+2y2-3x-5y+k とすると P=x2+3(y-1)x+2y2-5y+k P=0をxについての2次方程式と考えると、解の公式か x”の係数が1であるか ら,xについて整理した 方がらくである。 2 2章 解と係数の関係、解の存在範囲 e: と この1=12-(9-4k)=4k-8=0 ゆえに k=2 4 里の因数分 _-3(x-1)+√(+1) -3y+3±(y+1) (y+1)^=ly+1|であ = による。 このとき x= 2 すなわち x=-y+2, -2y+1 ないよう よってP={x-(-y+2)}{x-(-2y+1)} =(x+y-2)(x+2y-1) +x(1+28)るが、土がついているか ら,y+1の符号で分け る必要はない。 (p+4)=(0- 恒等式の性質の利用 検討 2 この2つの解をα, β と すると, 複素数の範囲で はP=(x-α)(x-β) と因数分解される。 Pがx,yの1次式の積に因数分解できるためには,この 解がyの1次式で表されなければならない。 よって,根号内の式y2+2y+9-4kは完全平方式でなけれ 完全平方式 ばならないから, y2+2y+9-4k=0 の判別式をDとする ⇔=0が重解をもつ ⇔判別式 D=0 ると, 1 いない (1)x2+xy-6y-x+7y+k x2+3xy+2y2=(x+y)(x+2y) であるから,与式が x, yの1次式の積に因数分解できると すると,(与式)=(x+y+a)(x+2y+b) ① と表される。 ...... ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+abとなるから, 両辺の係数を比較して a+b=-3,2a+b=-5,ab=k これから,kの値が求められる。 い 歌の 8A 10-1-x+(8-x)(ローズ) 練習 次の2次式がx,yの1次式の積に因数分解できるように、定数kの値を定めよ。 ③ 47 また,その場合に,この式を因数分解せよ。 (8-8) (2) 2x2-xy-3y²+5x-5y+k

解決済み 回答数: 1
数学 高校生

波線部について質問です。なぜ>=なんですか?二つの解とあるので,>ではないんですか?

基本例題 52 2次方程式の解の存在範囲 ①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 /p.87 基本事項 2 89 指針 2次方程式x2-2px+p+2=0の2つの解をα,βとする。 2章 解と係数の関係、解の存在範囲 (1) 2つの解がともに1より大きい。→α-1>0 かつβ-1> 0 (2)1つの解は3より大きく、他の解は3より小さい。 →α-3と β-3が異符号 以上のように考えると, 例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし, 判別解 2次関数 解答 別式をDとする。 4 =(− p)² - (p+2)= p²-p−2=(p+1)(p−2) 解と係数の関係から a+β=2p, aβ=p+2 (1) α>1,β>1であるための条件は D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (B-1)>0 D≧0から よって (p+1)(p-2)≥0 p≤ -1, 2≤p ...... ① (α-1)+(β-1) > 0 すなわち α+β-20 から 2p-2>0 よって>1 ...... 2 (α-1) (B-1)>0 すなわち αβ-(a+β) +1 >0から で p+2-2p+1>0 よって <3 ③ 求めるかの値の範囲は,①,②, ③の共通範囲をとって f(x)=x2-2px+p+2 のグラフを利用する。 (1) 12/27=(p+1) (p-20 軸について x=p>1, f(1)=3-p>0 から 2≦p<3 YA 3-1 x=py=f(x) + α P B x 0 1 2 -①- (2)(3)11-5p<0から 123 P p>. 11 5 <題意から α =βはあり えない。 2≦b<3 (2) α <β とすると, α<3 <βであるための条件は (α-3) (B-3) < 0 すなわち αβ-3 (a+β)+9<0 ゆえに p+2-3・2p+9 < 0 よって p> 5 練習 2次方程式 x 2-2(α-4)x+2a=0が次の条件を満たす解をもつように定数αの値 52 の範囲を定めよ。 (1) 2つの解がともに2より大きい。 (2)2つの解がともに2より小さい。 (3)1つの解が4より大きく, 他の解は4より小さい。 p.91 EX 34

解決済み 回答数: 1
数学 高校生

次の問題の青線のところで何故nを3kと考えるのでしょうか?どなたか解説お願いします🙇‍♂️

(1) 複素数zz+ 1 2 1 = √3 を満たすとき,230 + の値を求めよ。 30 2° = {cs(土)+isin(1/2)}+{cos(土/1/1) +isin (土/03)} 3 = cos(± 2) + isin(± 2x) + cos(+ 2 =) + sin(2x) 2n 3 1 (2) 複素数zz+ Z 1 = -1 を満たすとき, w=z"+ の値を求め z" 2n 2n = COS -π±isin よ。 ただし, n は整数とする。 (1) 230 + (1)21-2+1)- 130 = z+ と考えるのは大変。 《ReAction 複素数の乗は、 極形式で表してド・モアブルの定理を用いよ 具体的に考える 例題55) 2+1/2=15より2-32+1=0 ⇒ 極形式 2= 3 2n 3 = 2 cos π (複号同順) (ア) n=3k (kは整数) のとき w=2cos(2kz) =2 (イ) n=3k+1 (kは整数) のとき w=2cos2kz+ 31/37) = = 2 cos (ウ) n =3k+2 (kは整数) のとき 3 2n 2n +cost π干isin -π 3 3 23 =-1 思考プロセス 1 解 (1) + 2 よって 2 = = √3 より z-√3z+1=0 √3+√√(3) -4・1・1 /3 1 2 土 i 2 2 = cos(土)+isin(±)(複号同順) このとき, ドモアブルの定理により w=2cos2kz+ 4 1=2c08131 πC = -1 (ア)~(ウ)より, んを整数とすると [2 (n=3k のとき) (n=3k+1,3k+2 のとき) w= l-1 1 1 Z z" 複素数z が z+ = k ... ① (kは実数) を満たすとする。 Point z+ =kのときの " + の値 2.30 = {cos(土)+isin(土)} = cos (±5π) +isin (±5π) (複号同順) =-1 = ゆえに2/21 230 したがって 230 + 1 = 30 1-1=-2 1 2 よって (2) 2+ =-1 より -1±√3i z+z+1=0 2 = 2 土 = =cos (12/31) +isin (+12/28) (復号同順) このとき, ドモアブルの定理により w = 2" + 1 =z"+z 2 ① より z-kz+1=0 この2解は互いに共役な複素数 z, zであるから, 解と係数の関係よ よって |zl=1 すなわち |z=1 ゆえに, z=cosl+isin) とおくと z"=cosno+isinn0 したがって 1 2"+ =2"+(2")-1 2" = = (cosno+isinn0)+(cosn0+isinn0) (cosn0+isinn0)+(cosn0-isinn0) =2cosn0 2次方程式の解の公式を 用いてzの値を求める。 このことから,z" + 1 2" はnの値に関わらず実数となることも分かる YA J3 2 1 2 練習 57 (1) 複素数zが z+ = 1 2 を満たすとき, ' + 2 2 1 (2)複素数zz+ /2 を満たすとき, w = z" + 2 1 12

解決済み 回答数: 1
数学 高校生

次の(2)の問題で青線から青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

例題 57 "" の値 ★★★ 1 1 (1)複素数zz+ √3 を満たすとき,290 + の値を求めよ。 Z 2.30 = 1 1 = {cos(±²² 7) + ¡sin(±²² 7)}”* + {cos(± 2/37) + isin (±²/7)}" 2n 2n 土 2n = cos( ± 21/17) + isin (± 2/2 7 ) + cos(+27) + isin (+237) (2) 複素数zz+ = 1 を満たすとき, w = z" + Z の値を求め z" = COS 2n 3 ±isin 2n 3 2n +cos π干isin 3 2n π 3 よ。 ただし, n は整数とする。 2n = 2 cos 思考プロセス (1)+(2+1) と考えるのは大変。 《ReAction 複素数の乗は、 極形式で表してド・モアブルの定理を用いよ 例題 55 具体的に考える 2+112=1/3より2-3z+1=0 ⇒ 極形式 2= 1 解 (1) z+ = √ √3より 2°-√3z+1=0 Z よって (複号同順) 3 (ア)n=3k(kは整数) のとき w=2cos (2kz)=2 (イ) n=3k+1 (kは整数) のとき w = 2cos(2kz+ 237) = 2 cos² = (ウ)n=3k+2 (kは整数) のとき w=2cos cos(2kz+ (ア)~(ウ)より, kを整数とすると 4 =-1 = 2 cos =-1 2 (n=3k のとき) √√(3) -4・1・1 2 = 3 土 2 2 1 i 2 = cos(土)+isin (+)(複号同順) このとき, ドモアブルの定理により 2 = {cos(+1) +isin(土)} 土 = cos(±5π) +isin (±5π) (複号同順) =-1 w= |-1 (n=3k+1,3k+2 のとき) 1 Point z+ 1 =kのときの " + の値 Z z" 1 複素数zが z+ = k ... ①(kは実数) を満たすとする。 2 ① より z-kz+1=0 この2解は互いに共役な複素数z, zであるから, 解と係数の関係 よって |z|2=1 すなわち |z|=1 ゆえに, z=cos+isind とおくと z"=cosn0+isinn0 したがって 1 1 ゆ = =-1 2.30 -1 2" + したがって 2.30 + 1 =-1-1=-2 (2)+1 =-1 より 2+z+1=0 2次方程式の解の公式を 用いてzの値を求める。 よって このことから,z+ はnの値に関わらず実数となることも分 2" =2"+(2")-1 = (cosnd+isinn)+(cosn0+isinn0)-1 = (cosnd+isinn)+(cosn0-isinn0) =2cosno 1 34 13 2 -1±√3i 2= 2 = + =cos (2) +isin (土) (複号同順) O このとき, ドモアブルの定理により 1 w = 2" + =z+zn 23 23 T x 1 練習 57 (1) 複素数zが z+ == 2 を満たすとき, 12 + 2 1 (2) 複素数zが z+- =√2 を満たすとき, w=z 2.

未解決 回答数: 1
数学 高校生

[1]はなぜ判別式だけではだめで[2]はなぜ判別式がいらないのですか?

重要 例 148 三角方程式の解の存在条件 La の値の eの方程式 sin'0+acos0-2a-1=0を満たすりがあるような定数。 囲を求めよ。 基本14 → cosa=x とおくと, -1≦x≦1, 与式は 指針 まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 よって、求める条件は, 2次方程式 ①が-1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って, 考えてみよう。 2次方程式の解と数の大小 グラフ利用 D, 軸, f(k) に着目 cos0=xとおくと, -1≦xであり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は方程式f(x) = 0 が-1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 晶検討 x2ax+2a=0をにつ いて整理すると nia-S+0=0$ x²=a(x-2) よって、放物線y=xと 直線 y=α(x-2)の共有 点のx座標が -1≦x≦1の範囲にある を考えてもよい。 解 これは,放物線y=f(x) とx軸の共有点について,次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x) が -1<x<1の範囲で, x軸と異な る2点で交わる,または接する。 このための条件は,①の判別式をDとするとD≧O a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 答編 p.147 を参照。 [1]) YA a 答 1) (2 解答 よって a≦0,8≦a ...... ② 軸x=1/3について -1</1/8 <1から -2<a<2… ③ 0 10 -1 1 I f(-1)=1+3a>0から a>. 3 [2] f(1)=1+α>0 から a>-1 ⑤ YA ②~⑤の共通範囲を求めて <a≦o [2] 放物線y=f(x) が-1<x<1の範囲で, x軸とただ 1点で交わり,他の1点はx<-1, 1 <xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1)(a+1) < 0 よって -1<a< 3 [3] 放物線y=f(x) がx軸と x = -1 またはx=1で交わ る。 f(-1)=0 または f(1) = 0 から a=- [1], [2], [3] を合わせて -1≤a≤0 1/23 または α=-1 【参考[2] と [3] をまとめて,f(-1)f(1)≦0 としてもよい。 練習 0 の方程式 2cos20+2ksil 148 -1 0 F A 1 -1 00

解決済み 回答数: 1