学年

質問の種類

数学 大学生・専門学校生・社会人

有識者の方解説お願いしたいです。

曲面のパラメータ表示 p:U→ R° (p e C®(U)を与え,座標曲面 S= 9(U) を考える.また,曲線c= c(s) :I→ U (ce C®(I)) を考え, 7(5):= (poc)(s) : I→Sを測地線とする.このとき次の問に答えよ。 (1) (s) の速度ベクトルの大きさ |会(s)|| は, dy = Const for Vt E I ds を満たすことを示せ、ここで,const とは定数 (constant) の略記号のことで ある。 注:したがって,パラメータ sは, yの弧長パラメータの定数倍となる。 (2) パラメータ変換s= {(t) (t e Ii) を行うと,曲線(t) := (E(t)) は,あ る関数 p(t) e Co (ī) が存在して, ds (()) = p()() for tei T dy dt を満たすことを示せ、ここで(…)" は,(…)のS-接成分を表す。これを座 標曲面Sのパラメータ表示を用いた方程式で表すと, dck ( (%3D 1,2) for teI dPck dc dei -(t) =D p(t). dt? dt dt dt を満たすことと同値である.(式(1.1), (1.2) のどちらを示してもよい.) 注:測地線y=(s) は, 弧長パラメータの定数倍を用いて求められるが,上 記の(1)より,式(1.1) または式(1.2) を測地線の定義としてもよいことが分 かる。ただしこの場合,(t) のパラメータtは,もはや一般に弧長パラメー タの定数倍としては与えられない.また式 (1.1) は,「測地線とは,座標曲面 S上の加速度が速度に各点で比例している曲線」とも解釈出来ることを表し ている。

解決済み 回答数: 1
数学 高校生

5-⑵Ⅲの解説を読んでも理解できません。 わかりやすく説明して欲しいです。よろしくお願いします!

15) 次の各問いに答えよ.結果のみではなく、考え方の筋道も記せ。 6個の文字A, A. B, B. C. Cを1列に並べる順列を考える。 (i} 順列の総数を求めよ。 () 1番目の文字が A,2番目の文字がBである順列ABOロロロの うち同じ文字が隣り合わないものを樹形図としてすべて書き出せ、 (i) 求める街形図は次のようになる。 A-C-B-C A-B B-C (答) 全(注)1° A-Bく C-B A-C B< C-A () 同じ文字が隣り合わない順列の総数を求めよ。 (2) ある病院で月曜から土曜の6日間の 午前·午後の診療を3人の医師a. b. cでかわるがわる担当することになり、 右のような出勤表を作ることになった。 ただし、3人の医師の月曜から土曜まで () 1番目と2番目の文字の選び方はP2通りあり.3番日以降の文字の順 列はどの場合も5通りずつあるから、求める順列の絵数は、 3P2×5=3·2×5 やA, B, Cは対等 一積の法則 月火水|木|金土 午前a = 30 (答) b a b C である。 (2) 問題文中にある出勤表の表し方で、 午後」b C a C a b (日曜は休診) |をA. をB Aはaだけが出勤しない場合. B.Cも同様、 の診療回数が4回ずつで同数になるよ をC、 をB、 うにする。 (i} 6日間すべて午前と午後に同じ医師が担当するような出勤表は何通 り作れるか。 () 6日間すべて午前と午後に異なる医師が担当するような出勤表は何 通り作れるか。 () どの3人の医師も,2日以上連続して出勤することがないような出 動表は何通り作れるか。 をB.またはを b b または C をA、 a C または C b a (注)2° と略記すると,問題文中にある出勤表の例は順列CAACBB に対応する。 以下,この略記を用いて,A, B, C. A. B. Cから重複を許して6個とっ た文字の順列を考える。 (i)題意を満たす出勤表は, A. A. B, B. C. Cの6個の文字の順列に対 応するから,その総数は(1(i)より、 90 通り (答) (50 点) である。 (i)題意を満たす出勤表は、A, A. B. B, C. C の6個の文字の順列をつ くり,その各々に対してA. B. Cの午前と午後の担当の入れかえを考え たものであるから、その総数は, 90×2°= 90 ×64 【考え方) (1Xi)同じものを含む順列の公式を利用します。 () 最初の異なる2文字がA. B以外の場合も順列の数は同じです。 (2)(i)午前·午後がともにaの担当である場合を1文字Aで表すことにし, B, Cも同様に定義します。すると出勤表は "A, A, B, B. C, Cの6個の文字の順列” に対応することから(1Xi)が利用できます。 (i) 6. cの2人だけが出勤し、aが出勤しない場合をAと表すことにし、 B,Cも同様に定義します。すると出勤表は “A, A, B, B. c. Tの6個の文字の順列” A. B. Cは対等 (答) 『たとえばABならばaが2日 連続出勤となる. ABならばc が2日連続出勤となる、 AA ならばb.cが2日連続出勤と = 5760(通り) である。 ()「出勤した次の日は出勤しない」ような6文字の順列は,隣り合う2文 字が、 なる。 『(1)は a, b. cともに2日出勤 (Iはaが2+2回 (2日出勤)、 b.cが2+1+1回 (3日出勤). この他に,a, b, eが4回診 療するときの紙合せは、 A. A, B, B. C、 で A. A. B. B. C、 で A, A, A. A. A, A A. A. A. B. B. B A. A. A, A. B、こ などが考えられるが、 いず (S), (TI, (U以外の隣り合う 字が必ず現れるので不適 と “午前と午後の担当者の入れかえ” を組み合せて考えることができます。 ()(i),(i)で考えたA, B, C, A, B. Cがどのように並んでいればよいか を考えます。 (口. △は A, B, Cのうちいずれか1文字が入り, 口と△には異 なる文字が入ることを表す) のいずれかの型に並んでいる場合である。 a, b, Cいずれも4回診療するときのA. B, C, A, B. C の組合せで あり得るのは、 (I) A, A, B, B, C, C 【解答) (1Xi) A2個, B2個, C2個の合計6個の文字を1列に並べる順列であるから, 求める総数は、 (I) A, A, B, C, A, A -Aを何番目に並べるか,残り 4つのうちBをとどこに並べるか と考えて、 m A, B, B, C, B, B (IV) A, B. C.C. C, T の4通りである。 (S), (T), (U)を満たす並べ方を(1からMまでについて順に考える。 6! 2!2!2! 6.5.4.3 - 90 2.2 (答) 6C24C22C2 である。 としてもよい。 ーの数 16 - -0数 17-

未解決 回答数: 1
数学 高校生

5-⑵Ⅲの解説を読んでも理解できません。 わかりやすく説明して欲しいです。よろしくお願いします!

15) 次の各問いに答えよ.結果のみではなく、考え方の筋道も記せ。 6個の文字A, A. B, B. C. Cを1列に並べる順列を考える。 (i} 順列の総数を求めよ。 () 1番目の文字が A,2番目の文字がBである順列ABOロロロの うち同じ文字が隣り合わないものを樹形図としてすべて書き出せ、 (i) 求める街形図は次のようになる。 A-C-B-C A-B B-C (答) 全(注)1° A-Bく C-B A-C B< C-A () 同じ文字が隣り合わない順列の総数を求めよ。 (2) ある病院で月曜から土曜の6日間の 午前·午後の診療を3人の医師a. b. cでかわるがわる担当することになり、 右のような出勤表を作ることになった。 ただし、3人の医師の月曜から土曜まで () 1番目と2番目の文字の選び方はP2通りあり.3番日以降の文字の順 列はどの場合も5通りずつあるから、求める順列の絵数は、 3P2×5=3·2×5 やA, B, Cは対等 一積の法則 月火水|木|金土 午前a = 30 (答) b a b C である。 (2) 問題文中にある出勤表の表し方で、 午後」b C a C a b (日曜は休診) |をA. をB Aはaだけが出勤しない場合. B.Cも同様、 の診療回数が4回ずつで同数になるよ をC、 をB、 うにする。 (i} 6日間すべて午前と午後に同じ医師が担当するような出勤表は何通 り作れるか。 () 6日間すべて午前と午後に異なる医師が担当するような出勤表は何 通り作れるか。 () どの3人の医師も,2日以上連続して出勤することがないような出 動表は何通り作れるか。 をB.またはを b b または C をA、 a C または C b a (注)2° と略記すると,問題文中にある出勤表の例は順列CAACBB に対応する。 以下,この略記を用いて,A, B, C. A. B. Cから重複を許して6個とっ た文字の順列を考える。 (i)題意を満たす出勤表は, A. A. B, B. C. Cの6個の文字の順列に対 応するから,その総数は(1(i)より、 90 通り (答) (50 点) である。 (i)題意を満たす出勤表は、A, A. B. B, C. C の6個の文字の順列をつ くり,その各々に対してA. B. Cの午前と午後の担当の入れかえを考え たものであるから、その総数は, 90×2°= 90 ×64 【考え方) (1Xi)同じものを含む順列の公式を利用します。 () 最初の異なる2文字がA. B以外の場合も順列の数は同じです。 (2)(i)午前·午後がともにaの担当である場合を1文字Aで表すことにし, B, Cも同様に定義します。すると出勤表は "A, A, B, B. C, Cの6個の文字の順列” に対応することから(1Xi)が利用できます。 (i) 6. cの2人だけが出勤し、aが出勤しない場合をAと表すことにし、 B,Cも同様に定義します。すると出勤表は “A, A, B, B. c. Tの6個の文字の順列” A. B. Cは対等 (答) 『たとえばABならばaが2日 連続出勤となる. ABならばc が2日連続出勤となる、 AA ならばb.cが2日連続出勤と = 5760(通り) である。 ()「出勤した次の日は出勤しない」ような6文字の順列は,隣り合う2文 字が、 なる。 『(1)は a, b. cともに2日出勤 (Iはaが2+2回 (2日出勤)、 b.cが2+1+1回 (3日出勤). この他に,a, b, eが4回診 療するときの紙合せは、 A. A, B, B. C、 で A. A. B. B. C、 で A, A, A. A. A, A A. A. A. B. B. B A. A. A, A. B、こ などが考えられるが、 いず (S), (TI, (U以外の隣り合う 字が必ず現れるので不適 と “午前と午後の担当者の入れかえ” を組み合せて考えることができます。 ()(i),(i)で考えたA, B, C, A, B. Cがどのように並んでいればよいか を考えます。 (口. △は A, B, Cのうちいずれか1文字が入り, 口と△には異 なる文字が入ることを表す) のいずれかの型に並んでいる場合である。 a, b, Cいずれも4回診療するときのA. B, C, A, B. C の組合せで あり得るのは、 (I) A, A, B, B, C, C 【解答) (1Xi) A2個, B2個, C2個の合計6個の文字を1列に並べる順列であるから, 求める総数は、 (I) A, A, B, C, A, A -Aを何番目に並べるか,残り 4つのうちBをとどこに並べるか と考えて、 m A, B, B, C, B, B (IV) A, B. C.C. C, T の4通りである。 (S), (T), (U)を満たす並べ方を(1からMまでについて順に考える。 6! 2!2!2! 6.5.4.3 - 90 2.2 (答) 6C24C22C2 である。 としてもよい。 ーの数 16 - -0数 17-

未解決 回答数: 1
数学 高校生

マーカーで囲った所が分からないです。 教えて下さい!!

水の各間いに答えよ。結果のみではなく、考え方の筋道も記せ 6個の文字A, A. B, B. C, Cを1列に並べる順列を考える。 (i) 順列の総数を求めよ。 (i) 1番目の文字が A, 2番目の文字がBである顧列ABOロロロの うち同じ文字が隣り合わないものを樹形図としてすべて書き出せ。 (i) 求める樹形図は次のようになる。 A-C-B-C -B-C Aく A-B (答) *(注) 1° C-B C A-B ·A-C B< C-A () 1番目と2番目の文字の選び方は,P2 通りあり.3番日以降の文字の順 列はどの場合も5通りずつあるから,求める順列の総数は、 Pz×5=3·2×5 () 同じ文字が隣り合わない順列の総数を求めよ。 (2) ある病院で月曜から土曜の6日間の 午前·午後の診療を3人の医師a, b. cでかわるがわる担当することになり, 右のような出勤表を作ることになった。 ただし,3人の医師の月曜から上曜まで の診療回数が4回ずつで同数になるよ うにする。 (i) 6日間すべて午前と午後に同じ医師が担当するような出勤表は何通 り作れるか。 (i) 6日間すべて午前と午後に異なる医師が担当するような出勤表は何 通り作れるか。 (価) どの3人の医師も,2日以上連続して出勤することがないような出 やA, B, C は対等 や積の法則 月火水|木金土 午前a 午後」b|c (答) = 30 b a C b 一 C である。 b (2) 問題文中にある出勤装の表し方で、 a C a (日曜は休診) をC. PAはaだけが出勤しない場合. 『B.Cも同様。 1 をA. をB. をB. をで または をA. または または (注)2° と略記すると,問題文中にある出勤表の例は順列でAACBBに対応する。 以下,この略記を用いて, A, B, C. A. B. C から重複を許して6個とっ た文字の順列を考える。 (i) 題意を満たす出勤表は, A. A. B, B. C,Cの6個の文字の順列に対 応するから,その総数は(1)(i)より. 勤装は何通り作れるか。 …………(答) 90 通り (50 点) である。 (i)題意を満たす出勤表は,A, A, B, B, C, Cの6個の文字の順列をつ くり、その各々に対1.てA B. C の午前と午後の担当の入れかえを考え たものであるから,その総数は, 90×2°= 90 ×64 【考え方) (1)(i) 同じものを含む順列の公式を利用します。 () 最初の異なる2文字が A, B以外の場合も順列の数は同じです。 (2(i) 午前·午後がともに4の担当である場合を1文字Aで表すことにし、 B, Cも同様に定義します。すると出勤表は “A, A, B, B. C, Cの6個の文字の順列" に対応することから(1Xi)が利用できます。 (i) 6. cの2人だけが出勤し,aが出勤しない場合をAと表すことにし、 B,こも同様に定義します。すると出勤表は “A, A, B. B. C, Tの6個の文字の順列 *A, B, Cは対等 レういう意の味ですか、? = 5760(通り) たとえばABならばaが2日 連続出勤となる、ABならぼ が2日連続出勤となる。 A. ならば b. cが2日連続出錠 である。 ()「出勤した次の日は出勤しない」ような6文字の順列は, 隣り合う2文 字が、 (S) ロ (T) ロ なる。 F(1)は a, b, cともに2日出 (I)はaが2+2回 (2日出 b,cが2+1+1回 (3日と (U)ロ (口, △は A, B, Cのうちいずれか1文字が入り, 口と△には異 なる文字が入ることを表す) のいずれかの型に並んでいる場合である。 a, b, cいずれも4回診療するときの A, B, C, A, B. C の組合せで あり得るのは、 と “午前と午後の担当者の入れかえ”" を組み合せて考えることができます。 )(i), (i)で考えたA, B, C, A, B. T がどのように並んでいればよいか を考えます。 この他に、a, b, eが 療するときの組合せは、 A, A, B. B.C. を A, A B. B. C. こ A. A. A. A, A. A, A. A. B. B. A. A. A. A. B. などが考えられるが (S), (T, (U)以外の下 字が必ず現れるの- (I) A, A, B, B, C, C 評答) i) A2個,B2個, C2個の合計6個の文字を1列に並べる順列であるから, 求める総数は、 FAを何番目に並べるか,残り 4つのうちBをどこに並べるか と考えて、 (I) A, A. B, C. A, A (m A. B, B, C, B. B (IV) A, B. C. C, T, で の4通りである。 (S), (T), (U)を満たす並べ方を(1)から(Wまでについて順に考える。 6! 2!2!2! 6-5.4.3. 2.2 = 90 (答) 三 6C2C22C2 である。 としてもよい。 ーの数 17- ーの数 16 - ロロ

解決済み 回答数: 1
数学 高校生

この、1枚目の波線の部分ってなぜ例題103では言われてないのですか?

ついて 171 題 104 円と直線の交点を通る円 X円x+y°=50 と直線 3x+y=20 の2つの交点と点(10, 0) を通る円の中心と ;2次とし 24= 半径を求めよ。 一例題103 指計 円と直線の交点を通る図形に関する問題でも,基本方針は例題 103 と同じ。 CHART f=0, g=0に対し、kf+g=0(たは定数) 3章 して解決。 fと略記 2は定数 -こでは,円と直線の交点を通る図形として,次の方程式を考える。 17 x*+y?-50+k(3x+y-20)=0 …… 0 お2つの円でも起こりうることであるが、円と直線が共有点をもたない場合でも キの=0 から、,円の方程式が導かれてしまうことがある(p.173参照)。 よって の方程式を考える前に、2つの交点が存在することを,点と直線の距離の公式を 用いて確かめておくとよい。 2 つ の 円 A A |3x+y=20 で6 (07213 てない? 1? 解答 円の中心と直線の距離は 20 -=2、10 V10 |-20| V3+1° 52 -52 5,2 円の共 線の旅 これは、 山に 代入。 〒2つの交点」の存 在を確認する。 =V40 V50- 40<、50 であるから,この円と直 0 円の半径は (10,0) 線は2点で交わる。 次に,んを定数とし,次の方程式が表す図形を考える。 ニカが +y?-50+k(3x+y-20)=0……… ① のは,与えられた円と直線の交点を通る図形を表す。 のが点(10, 0)を通るとして, x=10, y=0 を代入すると 会 と同じ の。 k(x*+ア-50) +3x+y-20=0 でもよいが、①のよ うに,x, yの1次式 である直線の方程式 にんを付けた方が後 の計算がらく。 50+10k=0 これを解いて のに代入して k=-5 x+ y?-50-5(3x+y-20)=0 x°+y°-15x-5y+50=0 (問題文が単に「円の 方程式を求めよ」と いった場合,(*)の 形で答えとしてもよ いが、(-15)+(一5)? -4-50>0 であるこ と(b.154 参照)を 確認しておく方がよ 整理すると 25 すなわち x 中心() 半径- '15 5 したがって 2 2 5 5/2 V2 2 い。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1