学年

質問の種類

数学 高校生

黄色の部分どういう計算したらこの答えが出ますか?どなたか教えてもらえると嬉しいです

514 |指針 00000 重要 例 66 数列の和と期待値,分散 トランプのカードが枚n≧3)あり,その中の2枚はハートで残りはスペード 枚ずつめくっていく。 初めてハートのカードが現れるのがX枚目であるとき である。 これらのカードをよく切って裏向けに積み重ねておき,上から順に1 (1) X=k(k=1,2,…....., n-1) となる確率 n を求めよ。 (2)Xの期待値 E(X) と分散 V (X) を求めよ。 解答 n-1 (2) 期待値はE(X)=2 kbk を計算して求めるが, kかにはんの多項式となるから, k=1 k,k2,k の公式 (p.438 参照) を利用してΣ を計算する。 計算の際,nはkに無関係であるから、nk=nkなどと変形。 (1) は,枚目に初めてハートが現れ、それまではす であるから p= KD 全部でん n |-1| (2) |E(X)=E¹ kpx= 2 k. 2(n-k) n(n-1) k=1 ペードn-2枚 ペードター前にイン 前に引いた スペード 枚でハート、つまり1枚でスペード引いてる = n-2 n-3 n-4 n n-1 n-2 n-1 k=1 2 n n(n-1) (n ² k-2 k²) k=1 スペースペースペード ハート n-2-(k-2) n-(k-2) 2 n(n-1) 6 n+1 3(n-1)*(n-1)=n+1 また (DE), (1) n-1 E(X²) = Σk²pk=k². 2(n−k) k=1 スペスペンハート = 2 n(n−1) 12²_1) {n • _/\_n(n+1)_ _²}\n(n+1)(2n+1}} 練習n 本 (nは3以上の (kt 前まで 3 だから ひ . • \n(n+1){3n—(2n+1)} 2²-₁ (n²k³²-2k³) / € 1.00 n(n-1) k=1 k=1 [奈良県医大 ] みで 2(n-k) -(k-1) n(n-1) だから けず よってV(X)=E(X)-{E(X)=n(n+1)(n+1)* (n+1)(n-2) 18 k-1枚までなら次は スペード の入場列に で 基本 64 ドが現れる確率 2 [n_ck-u 2 n(n-1){(n = n(n+1) (2n+1)== n²(n+1)²} <2r={{n(n+1) _ n(n+1) p=0であるから Σkpn=1 kpx k=1 またに関係しない n の式を 前に出す。 2k=n(n+1) 2k¹= n(n+1)(2+1) K-1枚までスペード (1)D やん けそう 重要 2枚の をXk (1) n (2) 2 指針 解答 星 検討 PLUS LONE

回答募集中 回答数: 0
理科 中学生

3と4がほんとにわからないです😿😿 わかる人教えてください😿

A カC Cを 点と 物体にはたらく力について調べるために, 次の実験を 5 行った。 あとの問いに答えなさい。 ただし, 糸は質量 図1 が無視でき, 伸び縮みしないものとする。 【実験】 図1のように, 点Oで結 んだ三本の糸のうち、 一本に重 力の大きさが5.0Nの物体Xを つるし、他の二本にばねばかり 1 2 をつけて異なる向きに引 いて物体Xを静止させた。 A, Bは,糸3の延長線と糸1, の間のそれぞれの角を表す。 1. 1,2が点0を引く力は, 一つの力で表すことができ る。このように,複数の力 を同じはたらきをする一つ の力で表すことを力の何 というか, 書きなさい。 2. 図2は, 実験における A, Bの組み合わせの一つを表 しており, 物体Xにつけた 糸3が点0を引く力Fを方 眼上に示している。 このと き, 糸1が点Oを引く力と 糸2が点0を引く力を,図2にそれぞれかきなさい。 3.次は,A,Bの角度を大きくしていったときの, ばね ばかり1,2がそれぞれ示す値と,糸1,2点を引 く力の合力についてまとめたものである。a, 糸 31 bにあてはまる言葉として適切なものを、あとの ア~ウからそれぞれ一つずつ選び,記号で答えなさい。 > 図2 ア. 大きくなる イ. 小さくなる ウ. 変わらない 糸 1 ばねばかり1 ね A.B. Qil 糸1 糸2 O 物体X BA 10. 2 A,Bの角度を大きくしていったとき, ばねばかり1, 2がそれぞれ示す値は, a。 また, A,Bの角度 を大きくしていったとき, 糸1,2が点を引く力の 合力は, b。 4. 図1でA,Bの角度の大きさがそれぞれ60°のとき, ば ねばかり1が示す値は何Nか, 求めなさい。 <山形県 >

回答募集中 回答数: 0
数学 高校生

分からないのでどなたかお願いします🙇

〔2〕 表1は, 次郎さんの 「定期テストの結果」 の一部である。 次郎さんの学年には 全部で200人の生徒がおり、 結果欄には、テストの満点, 次郎さんの得点, 学年 全員の再点の平均値(以下、平均点)、次郎さんの前点の開発、20人中で 位が表示され、得点の分布圏には、学年全員の神経の度数分布が表示されている。 ただし、同じ得点の生徒は同じ順位とし、1位の生徒の人数が(n=1)の場合 その次に高い得点の生徒がいれば,その生徒の順位はx+n (位) とする。 得点の分布点 結果 満点(点) 得点(点) 点 平均 偏差値 順位 (位) 96~100 91~95 86~90 81~85 76~80 71~75 66~70 61~65 56~60 英語 100 74 65 48 56 136/200 47 / 200 1 0 10 4 18 12 表 1 100 68 71 29 32 32 25 11 10 11 15 26 27 20 26 (数学Ⅰ・数学A 第2問は次ページに続く。) この 「定期テストの結果」 を見て、 次郎さんと兄の太郎さんが話している。 次郎: 今回の国語のテストでは, 100位以内になることが目標だったんだけど, 残念。 太郎 その目標は、学年全員の得点の (1) 以上の点をとることと同じだね。 表1からわかるのは、今回はタチ点をとっておけば確実に目標を達 成できたということだね。 については,最も適当なものを、次の⑩~③のうちから一つ選べ。 最頻値 また、 ① 中央値 ②平均値 ③ 代表値 タチに当てはまる最小の整数を求めよ。 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

数1の2次関数の問題です。 もし良ければ ア、イ、オ、カ、キの問題の解説をお願いします🙏🏻🥺 答えは、ア,③ イ,-5<α<4 ウ,④ エ,③ オ,-aの二乗+a カ,-6 キ,-2<a<3 です!!

16 風早君と爽子さんが一緒に宿題で出た問題を考えています。 次の会話文を読んで, P.DE ア ウ I は選択肢から選び, イ オ カ まる式や値を答えなさい。 ( と エ 9 アの選択肢: ①:D> 0 9 (1) どんなxの値に対しても f(x) > g(x) が成り立つ -46- (2) どんな x1, x2 の値に対しても f(x1)> g(x2) が成り立つ。 ウと 【 宿題 】 2つの2次関数f(x)=x2-2ax+a,g(x)=−2x2+4x-8について、次の条件を 満たすように,定数aの値の範囲を求めよ。 H 9 キ はあては は同じものを選んでもよい) (ア): 1点, (イ) : 2点 (ウ) と ) 完答: 2点, (オ) ~ (キ) : 各2点 風早:(1) が成り立つためにはすべてのxの値に対して、f(x) - g(x)>0となればいいね! 爽子:そうか! y=f(x) - g(x) とおくと、 すべてのxの値に対して>0となるαの範囲を 求めればいいんだね。 風早 : そうだね。 f(x)-g(x)=0 の判別式をDとすると、 ア ア 爽子: を解いてみると….. 答えはイ だね。 (1) は解けたぞ! 風早 : やった! 次は (2) かぁ。 (2)は...(1) と何が違うんだろう? 爽子 : (1) は f(x)とg(x) に代入するxの値が共通だけど, (2) は共通とは限らないよ。 風早: 本当だ、 爽子さんよく気が付いたね。 ということは, (2) が成り立つためには (f(x)のウ)> (g(x)の エ)となればいいね! 爽子: f(x)の ウはオで,g(x)のエ はカだからオ 解けばいいね! 風早 : できた! 答えはキだ! となればいいんだよ。 > カを ②:D=0 ③:D<0 ③ :D < 0 ④:D≧0 ④ :D20 ⑤: D≤0 エの選択肢: ①: 軸 ②: 判別式 ③: 最大値 ④: 最小値

回答募集中 回答数: 0