学年

質問の種類

物理 高校生

この問題の問6と7が解き方が分かりません 解説をお願いしたいです

J 8 非等速円運動 【標準30分・28点】 長さの糸の端に質量mの小球をつけ、図に示すように、もう一方の端0を中心 にして鉛直面内で振り回し、円運動させる。重力加速度をの糸の張力をTとして 以下の問いに答えよ。なお、回転中の糸の長さは一定 (1) とみなし よび空気の抵抗は無視できるものとする。 外 問6 次に れた。 小 はいく 小球の大きさお のをつ るもの 問7 ま 糸が O Acts (m) 1.9 0 T P A Vo mg 図2 問1 小球が最下点にあるときを基準にして,糸が鉛直方向から角0だけ傾いたとき (P点) の小球の位置のエネルギーをm, g, 1, 0 を用いて表せ。 問2 小球が最下点にあるときの速さを” として, P点における小球の速さ”を、エ ネルギー保存則より求め, g, vo, 1, 0 を用いて表せ。 問3 P点における半径方向 (PO方向) の運動方程式を, T, m, l,g,v, 0 を用い て表せ。 てせ 問4 上の関係により,糸の張力Tをm,I,g,vo を用いて0の関数として表し,横 軸に 0,縦軸にTをとって, 0≧≦2の範囲におけるTの変化の概略を図示せよ。 ただし,小球は回転円運動を続けるものとする。 問5 小球が回転円運動を続けるには,最下点における速さ”はいくら以上でなけれ ばならないか。 1g を用いて表せ。

回答募集中 回答数: 0
数学 高校生

この線部の式の意味がよくわからないので教えてください🙇‍♀️ 蝶々型の面積比の問題です。

216 総合演習問題 §7 図形の性質 ( 7 (12分20点) 〔1〕 太郎さんのクラスでは,数学の授業で次の問題が宿題として出された。 6円 ABの 4 形は 問題 △ABCにおいて, AB = 4, BC=2, CA =3とする。 辺 AB を 1:3 に内分する点を D, △ABCの内心をIとして, 直線 AI と辺BC の交 点をE, 直線DIと辺BCの交点をFとする。 このとき, Iは線分 DF をどのような比に分けるか。 (1) 内心についての記述として,次の①~③のうち、正しいものはア である。 ア |の解答群 ⑩ 三角形の3本の中線は1点で交わり, この点が内心である。 ① 三角形の三つの内角の二等分線は1点で交わり, この点が内心である。 三角形の3辺の垂直二等分線は1点で交わり, この点が内心である。 三角形の3頂点から対辺またはその延長に下ろした垂線は1点で交わ り,この点が内心である。 (2) 太郎さんは宿題について考え, 次のように解答した。 イ AI I 点Iは内心であるから, BE= であり, である。こ ウ EI オ のとき, BF 「カキ] EF FI ケ であるから, である。 DI ク コサ よって, 点Iは線分 DF を コサ: ケ の比に内分する。 (3)△ADIと△EFIの面積比は AEFI 「シス] = AADI センタ である。 (次ページに続く。) 3)

回答募集中 回答数: 0