学年

質問の種類

物理 高校生

なにがどうなってこの式になったのか分かりません。

I わる、 以下の空欄にあてはまるものを各解答群から選び, マーク解答用 紙の該当欄にマークせよ。 図1のように, z軸の正の向きに一様であるが時間とともに変化する磁 場をかける。この中に,長さLで絶縁体の細い糸の一方の端を磁場中の ある点0に固定し,もう一方の端に質量 M, 正の電荷 +α を持つ粒子を つなぐ。 時刻 t <0 のある時刻に. 糸が磁場と垂直に張った状態で,粒子 を磁場と糸に垂直な方向に初速で打ち出した。 粒子は磁場と垂直な平 面上を, 2軸の正の方から見て時計まわりに半径Lで円運動した。 粒子 の円に沿った運動については,粒子の運動の向きを正の向きとする。 円周 率をとし,粒子にはたらく重力は無視してよい。 +9 Bo 図1 B Bo ( 1 + kt ) t 問1時刻t<0では一様磁場の磁束密度は一定値であった。 このとき, Boであった。このとき, 糸がたるまずに等速円運動することのできる粒子の速さの最小値を Vo, 角速度を wo とすると, vo は (1) と表される。たとえば, Bo=1.0T として,回転している粒子が陽子と同じ質量 M=1.7×107kg と電荷 g=1.6×10-1Cを持つ場合, 角速度 wo は、 (2) rad/s となる。 ただ て,粒子の速さは光速よりも十分に小さいものとする。 時刻 t < 0 で粒 子に初速v=3v を与え, t>0では磁束密度をB=Bo(1+kt) (kは正 ω

解決済み 回答数: 1
数学 高校生

2024本試験-5 イウについてなのですが、確かに問題文の初めで比は与えられているのですが、それをそのまま使っても良いのですか? 別の線だから、比は同じでも元の長さは違うからとか考えなくてもいいのですか? 2枚目以降の写真は別の問題なのですが、この時、比をそのまま使っては... 続きを読む

第3問~第5問は、いずれか2問を選択し、解答しなさい。 28・15 200表示さ 第5問 (選択問題(配点 20 図1のように, 平面上に5点A, B, C. D, E があり, 線分AC, CE, EB, ED. DAによって、星形の図形ができるときを考える。 線分ACとBEの交際 P.ACとBD の交点をQ, BD と CEの交点をR, BE の交点をT とする。 CEの交点をDとCEの文 A11 E 10 ここでは B R × 図 1 TAT (1) AQD 直線 CE に着目すると 2024年度 本試験 数学Ⅰ・数学A 29 =SEとな AP 22/13 ANE E SET QR DS =1 Q RD SA CQ 3 AD と R が成り立つのでの水 (1) と表示され 同じものを選んでもよい QR: RD イ: 3 ** DA JE R となる。 また, △AQD と直線BE に着目すると #00 0801 =82 00 DAT QB: BD D エ : オリ ① 100 DA となる。 したがって編 BQ QR RD = エ : イ となることがわかる。 ア の解答群 AP:PQ:QC=2:3:3, AT : TS: SD = 1:1:3 AC ① AP ②AQ (3 CP を満たす星形の図形を考える。 以下の問題において比を解答する場合は, 最も簡単な整数の比で答えよ。 (数学Ⅰ・数学A第5問は次ページに続く。) 問3A学1年) 土 X DX .0 e ④PQ (数学Ⅰ・数学A 第5問は次ページに続く

解決済み 回答数: 1
数学 高校生

複素数の問題です (1)の誘導があるので、(2-1)は解けるのですが、 (1)の誘導がない状態で、この問題が出てきた時は(1)のように考えて解くしかないのでしょうか 他の解法があったら教えて欲しいです

a- 原点を0とする複素数平面上に, 0 と異なる点A(a),および, 2点 0, A を通る直線がある . (1) 直線に関して点P(z) と対称な点をP'(z') とするとき, z==z が成り立つことを示せ (2) α=3+iとする. β=2+4i, y=-8+7i を表す点をそれぞれB, Cとおく. (2-1) 点Bの直線に関して対称な点をB' (B') とする. B' を求めよ. a (22) 線分 OA上の点Q (w)について, ∠AQB=∠CQO が成り立つときのwを求めよ. 原点を通る直線Iに関する折り返し 実軸に関する対称点はすぐに分かる (バーをつけるだけ。2z)ので,lが実軸に重なるように 0 を中心に回転さ せて考える.1 (z軸を回転したもの)に関して対称な位置にあるP(z), P'(z')については,0回転を表す複素数をw とすると, P, P' を -0 回転した (九工大工) ya P(z),l A, •P'(z) Q *Q (1/1). α (2/12) 00 w が実軸に関して対称であるから,ととらえる キ w w ことができる. 解答 () x (1)arga=0 とおくと, P, P' を0のまわりに0回転して得られる2点Q, 上図を参照. Q'は実軸に関して対称である. 恋した a=|al (coso+isin0) であるから, 0回転を表す複素数は, a (=w とおく ) |a| よって、ユーズ = z'=w. : w a- -2 ← w a a a ÷ = \a\ a w w W w 3+i (2) (2-1) (1)KI, B'=B= 3-i a (22) B'とBはに関して対称であるから, (2-4i)=4-2i w 10-10i 3-i (10-10i) (3+i) 10 =(1-i) (3+i)=4-2i C(Y) y ∠AQB' = ∠AQB=∠CQO α, B, y, B' の具体的な値から, 右図のようにな り 3点 B' QCは同一直線上にある. よって, w=(1-s)β'+sy (sは実数 ) w=(1-s) (4-2i)+s(-8+7i) =4-12s+(9s-2) i QはOA上にもあるから, w=tα=t(3+i)=3t+ti (tは実数) とおける.これらが等しいから, 4-12s=3t, 9s-2=t 10 s= t= 39 4 13 12 4 w=t(3+i)= . + -i 13 13 B(β) A(a) B'(B') Q(w) OQ= (1-s) OB'+sOC 4-12s=3(9s-2)

解決済み 回答数: 1