学年

質問の種類

数学 高校生

どうして2回の試行を行っているのに反復試行を使っていないのでしょうか?あと、(2)の確率分布表のPが3/1になるのはどうしてですか? 解説お願いします🙇

10箱の中に1から3までの数字を書いた球がそれぞれ1個ずつ、計3個入っている。 この箱の中から1個の球を取り出すことを2回行う。 (1)1回目に取り出した球を元に戻して2回目を取り出す場合 1回目、2回目に取り出した球に書かれた数字をそれぞれX 023 とする。x=2 11 ア ウ X=1 となる確率はP(X=1- Y=2 となる確率はP(Y=2)= であり, イ I オ X=1 かつ Y = 2 となる確率はP(X=1, Y=20) = である。 また、確率変数Xとは キ 12 23 7x344 2x = +5x= キ に適するものを、次の① ② のうちから一つ選べ。 ① 独立である 独立でない 1+2+3 このとき, X, XY の期待値 (平均) はそれぞれE(X) E(XY= であり, X, X+Y の分散はそれぞれV(X) V(X+1)= ス である。 1/123 (12) +2x3+5% 14449-4 (1-2)/32+(2-2-2)^(1/3 +1/+1 (2)1回目に取り出した球を元に戻さずに2回目を取り出す場合 1回目, 2 回目に取り出した球に書かれた数字をそれぞれ X', Y' とする。 X' = 1 となる事象を A, Y' =2となる事象をBとすると, セである。 また,E(XY)である。 ①②③ セ の解答群 123 α=1,A M Y=2B (1/2) ( WF 14 ① 事象A と事象 Bは独立 2 事象 A と事象 Bは従属 ソ に適するものを、次の①~③のうちから一つ選べ。 ② ~ P(A) = P(x-1)=1 / PBB) = Pα==== P13 2+216 ③ 36計 x12361

回答募集中 回答数: 0
化学 高校生

解説の②の部分の、(b)で分解を受けると共通してYを含む がどういうことかよく分かりません。 フェニルアラニンとメチオニンの順番をどのように決定すればよいのか教えてください。

の具 Pb2+を含む水溶液を加えると, 硫1 入試攻略 への 必須問題2) 右表は、タンパク質を 構成する8種の代表的な α-アミノ酸について, そ の名称と構造式を示した ものである。 いま、この 表のアミノ酸のうち4つ が直鎖状に結合した化合 物であるテトラペプチド Aがある。このアミノ酸 配列順序を決定するため に実験を行い,次の①~ ③の結果を得た。 ① 塩基性アミノ酸のカ ルボキシ基で形成され るペプチド結合のみを 名称 グリシン 構造式 H2N-CH2-COOH CH3 アラニン メチオニン H2N-CH-COOH CH2-CH2-S-CH H2N-CH-COOH CH2-CH-(CH3)2 O ロイシン H2N-CH-COOH CH2-CH2-COOH グルタミン酸 H2N-CH-COOH CH2-(CH 2 ) 3-NH2 リシン H2N-CH-COOH CH2-C6H5 フェニルアラニン H2N-CH-COOH CH2-OH セリン H2N-CH-COOH 加水分解する酵素でAを処理したところ, α-アミノ酸が3個結合した トリペプチドBと不斉炭素原子をもたないα-アミノ酸Cに分解された。 ②Bを酸により部分的に加水分解したところ、DとEの2種類のジペプ チドが得られた。このうちDは濃硝酸とともに加熱すると黄色に変化し す濃槌酸とともに加熱すると黄色に変化 たが,Eはほとんど無色のままであった。 ③ Aに濃水酸化ナトリウム水溶液を加えて加熱した後,酢酸鉛(II)水溶 液を加えたところ, 黒色沈殿を生じた SHO SHO 問 テトラペプチドAの配列順序について, 結合に関与していないα-ア ミノ基をもつアミノ酸が左端になるように (例)にならって記せ。0 (例) セリン アラニン ] (秋田大) 248 ・天然有機化合物と合成高分子化合物

回答募集中 回答数: 0
英語 高校生

全部の間違っているところの解説お願いします 明日までなので至急お願いします

19 次の英語は日本語に、日本語は王線を主語にし、英語に直しなさい。 (23) 1. この旅行の主な目的はローマ (Rome) を訪れることだ。 2. This area is too dangerous to go out in at night. 3. この本は初心者が理解しやすい。 10 ( )に入る最も適切な語句を①~④の中から選び、記号で答えなさい。 (1×10) 2 forget 1. A: I came here for an important meeting with Janet, but she's not here yet. B: She seems rather careless ( ) the appointment. Dto forget forgetting for forgetting 2. Don't expect ( ①me to cover ) for you this time. ②me cover 3me covering 1 cover 3. Juliet was studying the map to decide which route ( ). ①takes ②taking ③to take Dtook 4. This city is easy ( Dfor reaching ) by public transport. 2to be reaching 3 to have been reached to reach ②to 5. They have three dogs to look after, not to ( Dmention ②say ③speak 6. He is prepared to help you if you want him ( Ddo ③it ) the cat and the bird. Otell ). ①do it 7. It was not long before Paul ( Dbecame ②came ) to realize how serious the situation was. ③went ①turned 8. I was ( ①very busy to ) pay attention to what he was saying. ②too busy to ③so busy that 9. To ( ①give ) matters ( ), he got pneumonia after breaking his leg. pause ②take - bad 10. The president of our company is ( ②being delivered ①deliver Dquite busy that ③make - worse Oput double a speech at the party tomorrow. 3delivered Oto deliver

回答募集中 回答数: 0
数学 高校生

写真見づらくて申し訳ないです。問10だけ解き方がわからないので教えていただきたいです。

18:27 KK 18:27✔ ← R6_15_nurse_mat... @ 回 2 問6~10の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び 解答用紙にマークせよ。 5G Doll 74 A 2次関数f(x)=-2x+2-1.g(x)=-2x+28-1 (a,bは実数) について,xの方程式(x)=0とg(x) = 0 はと もに実数解をもつものとする。 f(x)=0の2つの実数解をα. Bとし, g(x)=0の2つの実数解を するとき、以下の 問に答えよ。 問6 α =βとなるようなαの範囲はどれか。 (1) -2<<-1 (2) -2<a<0 (3) -1<<1 (4) 0<a<2 (5) 上の4つの答えはどれも正しくない。 問7a=Bで,aとBがともに12より大きくなるような範囲はどれか。 (1) -2<<1-17 (2) -1<<1-√7 (5) 上の4つの答えはどれも正しくない。 1-√7 (3) 1-17 <<1+/7 (4) 1+/7 <<1 4 問8 α = B.y=すなわちf(x)=0とg(x)=0がともに解をもち,ayであるようなαの組 (v.b)はどれか。 (1)(1.0) (2) (1.1) (5) 上の4つの答えはどれも正しくない。 (3) (0.1) (4)(1.1) (1) 座標平面上の2つの放物線y=f(x)とy-g(x)の交点が(1, -1)であるとする。 このようなaba <b>について。 との積の値はどれか。 (2)- (5) 上の4つの答えはどれも正しくない。 問10a< 6. <y <B< であるとき, a+bはどの範囲にあるか。 (1)&<a+b (2) B <a+b <お (3) y <a+b <B (4) α <a+by (5) 上の4つの答えはどれも正しくない。 2- 3 問11~15の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び、解答用紙にマークせよ。 平面上に正五角形ABCDE がある。 頂点 A. B, C, D, Eはアルファベット順に反時計回りに配置されているものど はじめに頂点に基石を置く。 そして1個のサイコロを振り、出た目の数だけ碁石を反時計回りに頂点から頂点へ る試行を繰り返す。 ただし、試行によって移動した碁石の位置は、次の試行を行うまで変えないものとする。 例えば、 試行で3の目が出たら、 碁石はA→B→C→Dと進みDに到達する。 また、 最初の試行開始後、 碁石がAに戻って Aを通過したとき、 碁石が1周したものとする。 このとき、1回の試行の結果 石がAまたはBにある確率をα. 1回の試行の結果 蕃石が1周する確率をとする。 Pe を2回繰り返した結果、 碁石が2周する確率を 試行を3回繰り返した結果 碁石がちょうど2周してAにある確率をd とする試行を回した。 03だけが右からしてAにある確定をおとする。このとき はいくら

回答募集中 回答数: 0