学年

質問の種類

化学 高校生

(2)で最初に1リットルに溶ける酸素のmolをヘンリーの法則で求めたのですが違いました。どこが間違っているのか教えて頂きたいです🙇‍♀️

第1問 問2 標準大気圧は1.013 × 10° Pa で、 これは1気圧である。 1気圧のときの酸素および 窒素の水に対する溶解度を表1に示した。 表1 水 1mLに対する酸素および窒素の溶解度 温度 20°C 酸素 窒素 3.1×10-2mL 1.6×10-2mL 表1では, 水1mLに溶ける酸素および窒素の物質量を標準状態 (0℃ 1気圧) における体積に換算してある。 気体は理想気体とし、 標準状態における気体のモ ル体積は22.4L/mol, 気体定数 R は 8.31 × 103 Pa・L/(K・mol) とする。 また、 気体 の溶解度と圧力の間にはヘンリーの法則が成り立つものとする。 (1) 20℃において、 1気圧の空気が水 1.0Lに接しているとき, 溶けている酸素と窒 素はそれぞれ何gか。 有効数字2桁で求めよ。 なお、 空気は、 窒素と酸素の体積 比が4:1の混合気体とする。 (2) 容積が1.1Lの容器に水 1.0L と酸素 5.0×10 2 mol を入れ, 容器を密閉したまま 20℃に保った。 溶解平衡に達したときの酸素の圧力は何 Pa か。 また, 水に溶け ている酸素は何molか。 それぞれを有効数字2桁で求めよ。 なお、 酸素の水への 溶解にともなう水の体積変化, および水の蒸気圧は無視できるものとする。 また、 密閉容器の体積は変化しないものとする。

回答募集中 回答数: 0
数学 高校生

(2)のED:DFの問題が分かりません 解説よろしくお願いします🙇‍♀️

解答 基本 ((1) 例題 182 チェバの定理, メネラウスの定理 ( 1 ) 467 00000 1辺の長さが7の正三角形ABC がある。 辺AB, AC上にAD=3,AE=6 となるように2点D, E をとる。このとき, 線分 BE と CD の交点をF, 直線 AF と辺BC の交点をGとする。 線分 CG の長さを求めよ。 ( (2) △ABCにおいて,辺AB 上と辺 AC の延長上にそれぞれ点E,F をとり, 「AE: EB=1:2, AF:FC=3:1 とする。 直線 EF と直線 BCの交点をDと するとき, BD: DC, ED: DF をそれぞれ求めよ。 指針 図をかいて,チェバの定理, メネラウスの定理を適用する。 (1)3頂点からの直線が1点で交わるならチェバの定理 (2)三角形と直線1本で メネラウスの定理 B (1) AD=3,DB=7-3=4,AE=6,CE=7-6=1 △ABCにおいて, チェバの定理により BG CE AD =1 GC EA DB 駅やウ BG 13 すなわち =1 GC 64 BG -=8から BG=8GC GC よってCG=1/2BC=1/1 •7= り 79 B D ---- A -co- 3 -----6---- 7-----GC p.465 466 基本事項 3 3 ② B (2) (3) =1 (2) (3) E 3章 12 (2)△ABCと直線 EF について, A メネラウスの定理により E メネラウスの定理を用い るときは, 対象となる三 角形と直線を書く。 SoxneBD CF AE 2 =1 3 DC FA EB ③ C E BD 1 1 B D すなわち = 2 BD =6から DC (2)DC 3 BD: DC=6:1 △AEF と直線 BC について, メネラウスの定理により =1 F DC + OB ① ②② ED FC AB ED 13 F = 1 すなわち DF CA BE DF 2 200:08 ① ② 9.-1 ③ =1 ③ ED DF =1から ED: DF =4:3 に内分する点をD, 辺ACを4:3に内分する点 辺BCの交点をFと

回答募集中 回答数: 0
数学 中学生

この問題を教えてください!!お願いします🙇 答えは張ってあります!

201-10620 (3) A地点とB地点は直線の道で結ばれており,その距離は18kmである。 6人がA地点からB地点まで移動するために、 運転手を除いて3人が乗車できるタクシーを 2台依頼したが, 1台しか手配することができなかったので,次のような方法で移動すること にした。 ・6人を3人ずつ、第1組,第2組の2組に分ける。 第1組はタクシーで, 第2組は徒歩で, 同時にA地点からB地点に向かって出発する。 第1組は, A地点から15km離れたC地点でタクシーを降り、 降りたらすぐに徒歩でB 地点に向かって出発する。 ・タクシーは, C地点で第1組を降ろしたらすぐに向きを変えて, A地点に向かって出発 する。 第2組は, C地点からきたタクシーと出会った地点ですぐにタクシーに乗り、 タクシー はすぐに向きを変えてB地点に向かって出発する。 タクシーの速さは毎時36km 第1組, 第2組ともに歩く速さは毎時4kmとするとき、次の①, ②の問いに答えなさい。 ただし、タクシーの乗り降りやタクシーが向きを変える時間は考えないものとする。 ① 第1組がA地点を出発してからx 分後のA地点からの距離をykmとするとき, A地点を出 発してからB地点に到着するまでのxとの関係を, グラフに表しなさい。 ② 第2組がタクシーに乗ったのはA地点を出発してから何分後か, 求めなさい。

回答募集中 回答数: 0