学年

質問の種類

数学 高校生

数学の質問です (2)の問題でなぜ(1)のような場合分けのやり方ではダメなのですか? 解答よろしくお願いします🙇

第1章 IP 19 絶対値記号のついた学式 33 (解Ⅲ) 34 を利用すると・・・) Y y=x-3| のグラフは右図のようになるので, PAS y=x-31 3 y<2 となるæの値の範囲は 1 <x<5 2 y=2 次の不等式を解け (1) x-3/<2 .......① (2)|x+1/+/x-1/4 ......② 精講 絶対値記号の扱い方は,不等式の場合も方程式 (18) と同様に、 国 で学んだ考え方が大原則ですが,ポイントⅠの考え方が使えるなら ば、場合分けが必要ない分だけラクです。 また,3で学ぶグラフを利用する考え方(解Ⅲ)も大切です。 (1) (解Ⅰ) 解答 |-3|<2 は絶対値の性質より 2<x-3<2 (解Ⅱ) : 1<x<5 (2) i) <-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)-(x-1)<4 . -x-1-x+1<4 よって, -2<x<-1 i-1≦x≦1 のとき x+1≧0, x-1≦0 だから -2<x ? ②は (x+1)(x-1) <4 .. 0.x+2<4 0.x<2 よって, -1≦x≦1 をみたすすべての i) 1<z のとき x+1>0, x-1>0 だから ②は (x+1)+(x-1) <4 .. x<2 よって, 1<x<2 0 1 3 ◆不等式をみたす xを求めるので は式に残して おく 基礎問題 「基礎間」とは、入試に できない)問題を言いま 本書ではこの「基礎問」 効率よくまとめてありま ■入試に出題される 取り上げ、教科書 行います。 特に、 実にクリアできる ■「基礎間」→「精 題」で1つのテー ■1つのテーマは原 x-3 |r-3|= (x≥3) (3) i) x≧3のとき ①はx-3<2 :.x<5 よって, 3≦x<5 ii) x<3のとき ①は(x-3)<2 .. -x+3<2 ∴ 1<x よって, 1<x<3 i), ii) をあわせて1<<5 れないこと <x<3と仮定し れないこと i) ~i) をあわせて, -2<x<2 絶対値の中身が 0 となるところ で場合分け ポイント x≧3と仮定し ていることを忘 Ⅱ. |A| = A= -A (A<0) 1.xk<a (a>0) のとき, A (A≥0) -a<x<a ていることを忘 演習問題 19 次の不等式を解け. (1) |-2|>2 (2)|x-1|<|2x-3|-2

回答募集中 回答数: 0
数学 高校生

どうして最後、「合わせた範囲」になるのですか??

5 2 絶対値を含む不等式 0000 次の不等式を解け。 |x-1|+2|x-3|≦11 (1)x-4|<3x ズーム 則である。 (1)x-4≧0, x-40 の場合に分けて解く。 絶対値を含む不等式は、絶対値を含む方程式 [例題41] と同様に場合に分ける。 (2)2つの絶対値記号内の式が0となるxの値はx=1,3 よって, x<1, 1≦x<3, 3≦xの3つの場合に分けて解 く。 (2) UP 絶対値を含む 0 となる値を *-3<0 ずし, 方程式 x-10-1 なお, 絶対値を含む方程式では、場合分けにより,| | をはずしてできる方程式の解が場合分けの条件を満たす 方程式、不等 不等式につ かどうかをチェックしたが、絶対値を含む不等式では場合分けの条件との共通劇 をとる。 CHART 絶対値 場合に分ける (1) [1] x≧4のとき,不等式は x-4<3x [1] 解答 これを解いて x>-2 x≧4との共通範囲は x≥4 ① -(x-4)<3x [2] 例題 ま [1] [2 12のけ分 [2] x<4のとき,不等式は これを解いて x>1 x<4との共通範囲は 1 <x<4 求める解は,①と②を合わせた範囲で x>1 (2) [1] x<1のとき, 不等式は -(x-1)-2(x-3)≦11 よって 4 x- [1] 4 1 ≦x<1 [2] x<1との共通範囲は [2] 1≦x<3のとき, 不等式は x-1-2(x-3) ≦11 よって *≥-6 1≦x<3との共通範囲は [3] 3≦xのとき, 不等式は -6 3 1≦x<3 ② [3] x-1+2(x-3)≦11 よって *≤6 3≦xとの共通範囲は 3≤x≤6 求める解は,①~③を合わせた範囲で 4 ≤x≤6 3 練習 次の不等式を解け。 ③42 (1) 3|x+1|<x+5 (2)|x+2|-|x-1|>x 3 6

解決済み 回答数: 1
数学 高校生

(3)のオレンジで囲われたところが分かりません。🟰の意味を教えてください🙇‍♀️

(注)この科目には、 選択問題があります。 (3ページ参照】 第1問 (必答問題) (配点 30) (1)を実数の定数とし、二つの等式 z³-(4a-6)x+3a²-4a-7=0 ------ 12-al-5-a +(34-7)(9) を考える。 (1) は a 52-(4-6) (307) (税別) x 246 -73 (3) ①と③をともに満たす負の実数ェが存在するの のときである。 (エーロー a+ と変形できる。 22 (7 (2) 下の カ には、次の①~⑤のうちから当てはまるもの を一つずつ選べ。 ただし、 同じものを繰り返し選んでもよい。 @ ③ M 0 ②をたす実数ェが存在するようなαの条件は エ ② M 6 であり。 ②を満たす負の実数ェが存在するようなαの条件は である。 1-5+α (数学Ⅰ・数学A 第1間は次ページに続く。) 第1問 数と式、集合と命題 2次関数 〔1〕 出題のねらい 文字係数の2次式の因数分解ができるか。 ・絶対値記号を含み, 文字定数を含む方程式の解を調 べられるか。 解説 2 (4α-6)x+342-44-7=0 ...... ① |x-al-5-a (1) ①の左辺を変形して, ......② x²-(4a-6)x+(a+1)(3a-7)=0 {z_(a+1)}{z-(34-7)}=0 (x-a-1)(x-34+7)=0 ......ア, イ, ウ (2)②を満たす実数xが存在するのは, 5-a≥0 すなわち. a≤5 (......(3) ······オ エ のときで,このとき②より. x-a ±(5-a) x-a=5-α, -5+α より . x=5, 2a-5 となるから, ②を満たす負の実数xが存在するa の条件は, 2a-5<0 すなわち. a (これはas5を満たす。) ......キク (0) (3) ①を満たすæは、 x=a+1, 3a-7 よって、 ①、②をともに満たす負の実数xが存 在するのは, (i) a+1=2a-5 a< または, (i) 3a-7=2a-5 >a< のいずれかの場合である。 (i)のとき, α+1=24-5より. a=6

解決済み 回答数: 1