学年

質問の種類

生物 高校生

問題がわからない

演習問題 70 [血液循環] 次の文章を読み、下の問いに答えよ。 図はヒトの心臓の左心室内における圧変化と容積変化の関 係を模式的に示している。 血液は房室弁 (僧帽弁) を通って左 心室に入り、大動脈弁を通って左心室から出ていくこととす る。図において、心臓が収縮を始めると, 左心室内の圧がア からイへと上昇し, 続いて左心室内の容積がイからウを通っ 左心室内の圧が工か てエへと減少する。 弛緩が始まると, らオへと低下し、 続いて左心室内の容積がオからアへと増加 する。こうして心臓の収縮と弛緩の1つのサイクルが終了す る。 カ 左心室内圧 100 50 mmHg オ ア 40 80 左心室容積(mL) 120 70ml 問1 図の曲線が下線部力のように工からオへと変化するとき、房室弁と大動脈弁はそれぞれどのよ うな状態にあるか。次の①~④のうちから一つ選べ。 ① 房室弁と大動脈弁はともに開いている。 ② 房室弁は開き,大動脈弁は閉じている。 ④ 房室弁と大動脈弁はともに閉じている ③ 房室弁は閉じ、大動脈弁は開いている。 問2 心臓が収縮と弛緩を繰り返すときに心臓の音を聞いてみると,特徴のある音(心音)が繰り返し て聞こえ,そのうち、第2音と呼ばれる心音は動脈弁(大動脈弁と肺動脈弁)が閉じることによって 発生する。第2音が発生する時期は図のア~オのうちどれか。次の①~⑤のうちから一つ選べ。ま た。そのときの心臓の状態として最も適当なものを⑥~①のうちから一つ選べ。 ②イ ③ウ ① ア ⑥ 心室容積が最大となり血液の流入が止まる。 ⑧ 血液の流出が続き心室容積が減少する。 ④エ ⑤ オ ⑦ 心室容積が最大となり血液の流出が始まる。 ⑨ 心室容積が最小となり血液の流出が止まる ①血液の流入が続き心室容積が増加する。 コ ⑩ 心室容積が最小となり血液の流入が始まる。 問3 ヒトの血圧は, 心臓が大動脈内に血液を送り出すのに伴って上昇し, その後は降下していく。 このため、心臓が収縮と弛緩を繰り返すとき, 大動脈内の血圧は上昇と降下を繰り返すことになる。 心臓に近接する大動脈内の血圧が最低となる時期は図のア~オのうちどれか。 次の①~⑤のうちか ら一つ選べ。 また、そのときの心臓の状態として最も適当なものを⑥~⑩のうちから一つ選べ。 ① ア ③ ウ ② イ ⑥⑥ 心室からの血液の流出が始まる直前。 心室からの血液の流出が続いている間。 ④エ ⑤ オ ⑦ 心室からの血液の流出が始まった直後。 ⑨ 心室からの血液の流出が止まる直前。 ⑩ 心室からの血液の流出が止まった直後。 問4 図に示す心臓の場合. 1分間に心臓から送り出される血液の量はおよそ何になるか。 次の① ~⑥のうちから最も近い値を選べ。 ただし 09 分間の心拍数は70回と仮定する。 ①IL ②2L ③3L ④ 4L ⑤5L 6 6L (2015東北大改) 70回×70m²ご

回答募集中 回答数: 0
理科 中学生

(5)の答えが 晴れ 移動性高気圧におおわれているため なのですがなぜこのような答えになるのか詳しく教えてください!!

南南東 9 B C BA 100-第Ⅲ部 問題演習編 (3. 地学) 11 長野県内のある地点で、3月の連続した3日間の気象観測を行った。各問いに答えなさい。 I 気象観測の結果を図1のグラフに表した。この3日間の同じ時刻の天気図として、図2のA~ Cを用意した。 ただし、図2のA~Cは、日付順に並んでいるとは限らない。 湿度 気圧 図 1 気温 X (C) 1日目 2日目 3日目 [%〕 〔hPa] 何と 100 1030 配らしきったら、 12 80 1020 気圧少しずつ上がる 8 140 図 2 A 1000 60 1010 40 1000 20 990 ・4 0 980 24 3 6 9 12 15 18 21 24 3 6 9 12 15 18 21 24 3 6 9 12 15 18 21 24 q ε d e f b ε q ð B OT 気象 1000/ 1026 低 1006/ 1002 2 高 ¥1032 1022- 低 /高 1028 し +1014- 1002% 10064 -120 150 150 150 130 140 -130 140 (1 図1の,グラフ X が示す気象要素は何か書きなさい。気温 図3は、図1の2日目12時の天気図記号である。 この天気図記号から天気, 風 図3 4C 間はけを飲みとり、それぞれ書きなさい。ただし、風向は漢字で表しなさい。 (3) 1~3日目の天気図は図2のA~Cのどれか,それぞれ記号を書きなさい。 (4) 図1から、寒冷前線はいつ観測地点を通過したと考えられるか 最も適切なも 今のを次のア~エから1つ選び、記号を書きなさい。 ウ ア 1日目の12時から18時の間 イ 2日目の9時から15時の間 3日目の3時から9時の間 3日目の12時から18時の間 (g 3日間の気象観測を終えた翌日、この観測地点では一日中同じ大気が続いた。この日の天気 は何か、天気を表す語句を書きなさい。また,そのように判断した理由を、図2の天気図をも とに簡潔に書きなさい。 晴れ 移動性高気圧におおわれるため、 II 2日目15時の気象観測を行った直後、部屋の中に入ると、窓ガラスの内側の表面が白くくもっ

未解決 回答数: 1
数学 高校生

確率の最大値の問題なのですが2つの問題どちらも全くわからないので解説して頂きたいです😭🙏 お願いします🙇‍♀️

11 確率の最大値 きれているのが致した。頑をを取り出すとき、2枚だけが 号で残りの(k-2)枚はすべて異なる番号が書かれている確率をp (k) とする. (1) p(k+1) p(k) (4≦k≦9) を求めよ. つず A ある 福岡教大/一部省略) (2) (k) (4≦k≦10) が最大となるkを求めよ. 確率の最大値は隣どうしを比較 確率 (k) の中で最大の値 (または最大値を与えるk) を求める 問題では、隣どうし[p(k)とか(k+1)] を比較して増加する [p(k) p (k+1)]ようなkの範囲を求 (k) (k+1)の大小を比較すればよいのであるが,p(k)とか(k+1)は似た形をしているの で 力(k+1) p(k) を計算すると約分されて式が簡単になることが多い。 p(k+1) p(k) ≧ 1⇔ p(k) ≤ p (k+1) である. 解答 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30Ck通りあり,これ らは同様に確からしい.このうちで題意を満たすものは 同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方がC2 通り, 異なる番号 の (k-2)枚について番号の選び方がCk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. 10-3-9Ck-2-3-2 よって, p(k)= 30Ck p(k+1) 9Ck-1-3k-1 p(k) 30Ck 10-3 を約分 30Ck+1 9Ck-2-3-2 (k+1)! (29-k)! 30! 9! (k-2)! (11-k)! -.3 ←順に, 30! k! (30-k)! (k-1)! (10-k)! 9! 3(k+1) (11-k) 1 30Ck+1 最後の3は3-1と3-2 を約分. 1 30Ck, 9Ck-1, 9Ck-2 (k-1) (30-k) (2) p(k) sp(k+1) s )= p(k+1) p(k) ≧1⇔ 3(k+1)(11-k -≧1 p(k)>0, p(k+1)>0 (k-1) (30-k) ① は を D ⇔3(k+1)(11-k) ≧ (k-1)(30-k)⇔k(2k+1)≦63 5.(2·5+1)<63<6·(2・6+1) であるから, ①を満たすにはk=4,5で①の等 kは4~9の整数 号は成立しない。 よって p(4)<p(5)<p(6), p(6)>p(7)>p(8) >p (9)>p(10) となり, p(k) が最大となるんは 6. 11 演習題 (解答はp.52) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて, 当たりかはずれか を確認したのち, もとに戻す試行をT とする. 試行Tを当たりくじが3回出るまで繰り 返すとき, ちょうど回目で終わる確率をp (n) とする. (1) 試行Tを5回繰り返したとき, 当たりが2回である確率を求めよ. (2) n≧3として, p(n) を求めよ. (3) p(n)が最大となるnを求めよ. (芝浦工大) n回目が3回目の当たり なので,それまでに当た りは2回(3)は例題と 同じ手法を使う. 44 る 3

未解決 回答数: 1