学年

質問の種類

数学 高校生

絶対値のついた方程式を解くとき、場合分けをした範囲にその範囲を満たす解がない場合があるのはどうしてですか。変なこと言っているのは十分承知なのですが教えていただけると嬉しいです。イメージ的には連立不等・方程式(勝手に作りました)を解いてるみたいなものなのですかね。

A (A≧0 のとき) -A (A<0 のとき) 基本 例題 41 絶対値を含む方程式 次の方程式を解け。 含む不等式の解法 (1)|x-2|=3x8-xS+ | (2) |-1|+|x-2|=x 指針 絶対値記号を場合分けしてはずすことを考える。それには, 141={_^ 00 であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち, | |内の式=0の値である。 (2) (1)x2≧0と x-2<0, すなわち, x-2<0 x-2≥0 x≧2とx<2の場合に分ける。 x-1<0x1≧0 (2)2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1, 2であるから, x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 2 x 場合の分かれ目 (1) [1] x2 のとき, 方程式は x-2=3x 重要 答 これを解いてx=-1 x=-1はx≧2を満たさ ない。 [2] x<2のとき, 方程式は これを解いてx= x= 2 2 1 [1], [2] から, 求める解は x= 2 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないか 必ずチェックするこ (解答の の部分)。 m 最後に解をまとめて (2)[1] x<1のとき,方程式は(x-1)(x-2)=xx-1<0, x-2<0- 不 -(x-2)=3x 1/1 は x<2を満たす。 すなわち -2x+3=x -をつけて」を これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 x=1は1≦x<2を満たす。 [3] 2≦x のとき, 方程式は (x-1)+(x-2)=x す。 x-1≧0, x-2<0 すなわち 2x-3=x 2 <x-1>0, x-2≧ > これを解いて x=3 x=3は2≦xを満たす。 以上から. 求める解は x=1,3 最後に解をまと y=x-2のグラフと方程式 (1)について y=x-2は, x≧2 のとき y=x-2 yy=3

解決済み 回答数: 1
数学 高校生

なぜ青線部のことがいえるのですか?

18 第1章 数と式 標 問 6 式の値 ( 分数式) 19 解答 (1) 2x-y+z=0, x+2y+8z=0より (東亜大) x=-2z,y=-3z よって, ry+y+zx_(-2z)(-3z)+(-3zz+z(-2z) x²+ y²+z2 (-2z)+(-3z)2+22 分数式を1つの文字で表す 2式を連立して, x,yについ て解く (1) 実数x, y, はいずれも0でなく, 2x-y+z=0とx+2y+8z=0 の xy+yz+zx 両方を満たすとき x² + y²+z² の値を求めよ. ytz_z+x+y=mとするときの値を求めよ. (2) 2 I y また,(1+2) (1+72)(1+/-) の値を求めよ. (6-3-2)z2 1 = (東海大) (4+9+1)2214 (2) I 精講 (1) 文字が3つありますが 解法のプロセス 2x-y+z=0, x+2y+8z=0 を利用して, 1つの文字で残り2つの文字を表現 (1) 2c-y+z=0, x+2y+8z=0 xy+yz+zx し、 に代入します. x²+ y²+z² を連立してz,yをを用い て表す. (2) 分数式の値を求める際,その値をとで もおいて考えていくとラクなことが多いのです. ↓ my+yz+x この問題では、問題文でmとおいてあります. +2+2に代入する. I y+z_z+x+y=mより y 2 y+z=mx ①, z+x=my..... ② x+y=mz... ③ ①+②+③ より 2(x+y+z)=m(x+y+z) よって, (x+y+z) (m-2)=0 したがって, x+y+z=0 またはm=2 x+y+z=0のとき, y+z=1=-1 I y+z. =m より y+z=mx ...... ① I +1=mより2+x=my....... ② y 同様に, z+x= y=-1, y y x+y=-=-1 2 2 x+y=mよりx+y=mz... ③ 2 y+z=-x を代入 m=2となるx, y, zが存在 することを主張している なお、m=2のとき ①②よ りェyが得られ、同様に ② ③ より y=z が得られ 解法のプロセス よって, m=-1 y+z_z+x+y=m (2) 2 I y また,r=y=z (≠0) のとき =2となる? したがって,m=-1,2 を y+z=m, 2+1=m y (1+1/2)(1+7)(1+2/)=ty.y+zz+p y Z ytzztexty る I y 2 =m³ =-1, 8 として, ① ② ③を連立してmを求めます. こ のとき,x,y,zの文字を消去していくのも1つ の方針ですが,x,y,zが同等の扱いを受けてい るので(ryやzに対して特別な扱いを受けて いない), x, y, zの対称性を利用して処理するの が簡単でしょう (標問9参照)。 ①+②+③ をつくると 2(x+y+z)=m(x+y+z) (x+y+z) (m-2)=0 が得られます. これから x+y+z=0 またはm=2 となります. I x+y=m 2 と扱って [y+z=mx z+x=my x+y=mz とする. 演習問題 ↓ 6-1 x+4y=y-3.z≠0のとき、 2x²-xy-y² この連立方程式を解く、 2x2+xy+y2 の値を求めよ. (山梨学院大) IC (6-2x+y=y+z=2のとき、この式の値を求めよ。 (札幌大) y 章 1

解決済み 回答数: 1