学年

質問の種類

漢文 高校生

漢文の問題について質問です。 写真二枚目の問題がわかりません。傍線部③というのは、写真一枚目にあります。 写真三枚目が現代語訳です。 どうして答えがオになるかが分かりません。 わかりやすく解説お願いします🙇‍♀️

10 ステップ 基礎力を身につけよう じゅうはっしりゃく そうせんし (史伝) 3 『十八史略』 曽先之 読解 狄仁傑にとって人材とはどのようなものか 句形否定形① ステップ1 ≒常備薬 之 元行沖狄仁保 規き (注3) LO とう てきじんけつ 唐の時代、朝廷での信頼も厚かった狄仁傑(注1)のもとには多くの人材が集まっていた。 その人材に関してのエピソードである。(設問の都合で送りがなを省略した箇所がある。) (注2) こう ちゅう 沖博学多通 明 (注4) めい こう 公 1111 〈元行沖が) 末 日、 ヒテ 傑 木席 あルヒト ハク 無也。或 できようか、いやできない。 ムルハ ニシテ 也。或日、「天下 之の 日 重之。行 沖 (注5) ハラント。 門、 珍味多 矣。 請備薬 門下 ろこ やく わが ちゅう ケン 籠 物、何可一 (注7) 薬 桃季 李り 「薦」賢 為」国 非為」私也。」 賢者 多シ \11 どうして一日でもなくすことが 日本 在公門矣。仁傑 (注)1 狄仁傑- 名。 2 元行沖 人名。 狄仁傑に仕えていた。 3 いさ 規諌正し諫めること。 4 明公地位・名誉のある人に対する尊称。ここでは狄仁傑のこと。 5 珍味おいしいごちそう。 H] あ 漢字句形 習得問題 内容 ●本文 〇参考図 [エピリ 〈元行 <狄

解決済み 回答数: 1
数学 高校生

Focus Gold数II・Bの問題です 矢印が書いてある部分の途中式が分からないのですがどなたか教えていただけませんか?

練習 第3章 図形と方程式 127 Step Up +5 章末問題 77 (1)3点A(2, 1), B(-4, 4), C(t+1,3t+5) が一直線上にあるように, 定数tの値を定めよ. 55 (2)異なる3点A(1, -3), B(t. t-3). C(t+2.2t-1) が一直線上にあるように,定 数tの値を定めよ. (1) 2点A(2, 1), B(-4, 4) を通る直線の方程式は, |t=-1 のとき, C(0, 2) U+YA 4-1 y-1=- -4-2 (x-2)より、 x+2y-4=0 06S+5066 B (21 C 点C(t+1,3t+5) がこの直線上にあれば, 3点は一 直線上にあるから, (t+1)+2(3t+5)-40より、 2 S-4 O 2 7t+7=0 よって t=-1 別解 直線AB と直線ACが一致するときを考える。 直線AB の傾きは, 4-1 1 -4-2 2 直線ACの傾きは, (3t+5)-1 3t+4 (t+1)-2 t-1 1 3t+4 よって, より. t=-1 2t-1 直線AB と直線ACは傾きが 等しく, ともにA(2, 1) を通 る直線となる. ABの傾き1/2と一致すると きを求めるので,t+1=2の 場合だけ考えればよい. 3 (2) t=1のとき, 3点A(1,3), B(1, 2), C(31) は 一直線上にない. t≠1 のとき, 2点A(1, -3), B(t, t-3) を通る直線 の方程式は, y-(-3)=- (t-3)-(-3) t-1 (x-1) より y+3=- +1(x-1) 点C(t+2,2t-1) がこの直線上にあれば、3点は一 直線上にあるから, 2点B,Cのx座標は異なる ので、直線BC の方程式を求 めて, 点Aがこの直線上の 点であることからの値を求 er めてもよい t 2t-1+3= F-1(t+2-1) ② 途中式は? 2(t+1)(t-1)=t(t+1) t=-1 のとき,AとCは一致する. よって, tキー1だから, 2t-2=t よって, t=2 別解点 B, C のx座標が異なるので, 3点A, B, C が一直線上にあるとき, 直線AB, AC はy軸と平 行でない. t≠-1より、両辺を t+1 で 割る. t=2 のとき, B(2,-1), C(4.3) YA 3 また, AとCは異なる点なので, 直線ABの傾きは, tキー1 (t-3)-(-3) ... ① t-1 t-1 直線ACの傾きは, (2t-1)-(-3)-2(t+1) -=2 (t+2)-1 t+1 2 10 4 B ......2 (+£ 8-3A

解決済み 回答数: 1
数学 中学生

⑶で、式の作り方が分からないので教えてください🙏🏻‎ ちなみに赤い字で書いてある解説の意味も分からないので、何のことか説明してもらえると助かります🙏🏻

80 34 次関数 9 一次関数の利用 p.86-p.87 step.A とのリ 0.56 れいとさんは午前10時に自分の家を出 して、途中にある図書館で本を借りてから、 駅まで行きました。 れいとさんが家を出発してからょ分後に、 自分の家からgmの地点にいるとして、 との関係をグラフに表すと。 次の図のようになりました。 C地点・・・1000 BR B地点600 図書館 500 300円 A地点 0 12(1) 10 15 家 (午前10時) (1) れいとさんの家から図書館までの 道のりは何mですか。 図書館にいた間は、進んだ道のりは変わらない。 グラフでの値が変化しても、yの値が一定のB地点が 図書館の位置である。 (2)れいとさんが自分の家を出発してから 3分後にいる地点から, 駅までの道のり は何ですか。 →ェ=3 x=3のときのyの値を読みとると,y=300 家から駅までは1000mなので 1000-300-700 (3)れいとさんが上のグラフの B地点とC地点の間にいるときの, との関係を、 城をつけて 式に表しなさい。 グラフは、右へ進むと上へ400進むから、 一焼きは、 400 5 =80 600m 700m 求める一次関数の式を y=80ェ+b とすると,この直線は、点(10, 600)を 通るから、 600 = 80×10+b b=-200 y=80x-200 (10≤x≤15)

解決済み 回答数: 1