学年

質問の種類

数学 高校生

この問題でx=0で微分可能でないことは、計算して求めますか?解答には、計算式が書いてなかったのですが、x=0で微分可能でないことはすぐわかることなのですか?回答よろしくお願いしますm(_ _)m

関数y=|x|√x+2の極値を求めよ。(笑) ReAction 関数の増減は、 導関数の符号を調べよ IIB 例題220 ③開 noboA 思考プロセス 場合に分ける xの範囲 (定義域に注意) xx+2 |x|√x+2= ] のとき)← -x√x+2 それぞれ微分を考える ] のとき) 絶対値記号を含む関数の注意点 ・・ 関数が微分可能でない点で極値をとる場合が ある。 y to 例 x=0で微分できないが極小 y=|x| y 例題 よって, x>0 66 X y′ = √x +2 + 定義に戻る 極小・・・ 減少から増加に変わる点 極大・・・ 増加から減少に変わる点 解この関数の定義域は,x+2≧0 より x≧-2 (ア) x≧0 のとき y=x√x+2 減少 増加 x 極小 By = |x|√x+2は x=0で微分できない。 Point参照。 2√x+2 3x+4 2√√x+2 >0 (イ) −2≦x< 0 のとき y=-x√x+2 3x+4 よって, -2<x< 0 のとき y' 関数の微分は定義域の 端点 x=-2では考えな 2√x+2 y=0 とすると 8 -2 ... 4 43 : 0 x=- い。 |極大 4√6 YA 19 3 + 0- + (ア)(イ) の増減 表は右のようになる。 4√6 y 0 > 7 07 9 よって、この関数は x=- 4 -1 のとき 極大値 3 46 9 x = 0 のとき 極小値 0 -24 0 x=0 のときy' は存在 しないが, x= 0 の前後 で減少から増加に変わる から、極小となる。 x 極小 lim Point... 微分可能でない点と極値・ 関数f(x)=|x|√x+2 において XITO f(x)-f(0) = =√2, lim == -√2 f(x)-f(0) 300= x-0 x-0 m 微分可能でない。 しかし, x = 0 の前後で f'(x) の符号

解決済み 回答数: 1
数学 高校生

赤い下線の変形で他の文字ではなく、y1を消しているのは、2行前のPFベクトル・nベクトルがc、x1、a2で表されているのに合わせにいくためですか?回答よろしくお願いします。

186 例題 96 焦点と接点を結ぶ直線と接線のなす角 楕円 1,2 D ★★★★ 621 上の任意の点Pにおける接線をとし 2つの焦点を F, F とするとき,接線1が2直線 PF, PF" となす角は等しいことを示せ。 目標の言い換え 2直線のなす角 → (傾き) = tan b, と tan0 = tan (01-02)=・・・(加法定理)・・・の利用 → 接線や直線 PF, PF' がx軸に垂直のときを 分けて考えなければならない。 (大変 ) ⇒ 接線の法線ベクトルをすると 法線ベクトルの利用 すべての場合を考えることができる。 PF のなす角α) = (n と PF のなす角β) F ⇒ cosa = cosβ を目指す。 C y 02 0₁ 0 x Action» 接線が直線となす角の性質は、法線が直線となす角を利用せよ α>b>0 としても一般性を失わ B a P =d2-2cx1+ CX であるから |PF| = q – Cx1 =a- 同様に, PF'= (-c-x1, -y)より a CX1 a PFn= -C-1,|PF|=α+ CX1 a PF, PF' とnのなす角をそれぞれα, β(0≦a≦ MBS) とおくと cosa= cos B Action. PF • n CX1 1 a² CX1 a- n an PFn (a PF.n |PF||| cosa=cosβ (a + cxi)\n\ CX1 a sanB≦πであるから alml a=Ba したがって, 接線が2直線 PF, PF'′ となす角は等し Point...焦点と接点を結ぶ直線と接線のなす角 - 光線が直線に当たって反射するとき,右 図1のように入射角と反射角の大きさ は等しくなる。 曲線上の点Pに当たって 反射する場合には,図2のように、点P における接線に対して入射角と反射角を 考え、直線と同様にこれらの大きさは等 しくなる。 よって ない。 焦点F'(-c, 0),F(c, 0) (c>0) y▲ P(x1,yi) とすると c² = a²-b² えればよい。 b>a (長軸がy軸上) のときも同様に証明でき ることが明らかであるか > bの場合だけ考 F また,点P(x1,y1) とすると, 接線 F -a -C 0 ca の方程式は X1X Viy + a² 62 =1 よって, lの法線ベクトルの1つは X1 n = ここで, PF = (c-x, y) より n = (a, b) 200 PFn=(c-x1 X1 09D 62 2 CX1 X1 Yı 2 a² a² 62 2 Pは楕円上の点であるから+2=1 よって PF = CX-1 · n 直線 ax + by + c = 0 の 法線ベクトルの1つは 0円 図 1 例題96で証明したことは, 右の図3において, 点Pが のどのような位置にあってもこの性質が成り立つこと 楕円の1つの焦点から発射した光線が楕円に当たって反 と、すべてもう1つの焦点に集まることが示されたこと (さらに, p.188 Play Back 12 も参照。) また ||PF|2=(c-x)2+y^ X1 =c2-2cx1+x2+621 = c2+b2-2cx1+ (1-1) x² 62 a" したがって、盗んできた 練習 96a,bはa>0,6≠0 を満たす定数とする。 の交点Pにおける放物線Cの接線をしと 男接線が2直線, PF となす角は等し

解決済み 回答数: 1
経営経済学 大学生・専門学校生・社会人

国際収支から為替レートが決まることでドルの価格が決まることを示しているこの図表の横軸の取引量とは何の取引量を意味しているのですか??

Chap 2 国際収支と外国着替し 【1】 変動相場制の国際収支調整機能 国際収支黒字とは、資金の流入が流出を 上回ることを意味します。 資金の流入とは 外国から日本に資金が入ってくることです が、外国にある外貨は,外国為替市場で外国 通貨が円に交換されてから日本に入ってきま す。なぜなら、日本国内では外貨のままでは 利用できないからです。 反対に、資金の流出は,日本から外国資 金が流出することですが,日本にある円は, 外国為替市場で円を外国通貨交換して外貨で、 海外に出ていきます。 なぜなら, 外国では円 のままでは利用できないからです。 したがって,国際収支の黒字とは、自国に 資金が流入するほうが多いので、自国通貨買 い外貨売りが多く、自国通貨は超過需要,外 貨は超過供給の状態です。 したがって, 図表 27-5のドルの市場では, 右上がりの供給 曲線と右下がりの需要曲線であればドルの超 過供給となり,ドルは下落(=円が上昇) し 需要と供給が一致。すなわち国際収支が均衡 する(ゼロとなる) 為替レート水準e*に落 ち着きます。 逆に国際収支が赤字の場合はドルの超過 需要であり、ドルの価値が上昇(=円が下落) 需要と供給が一致, すなわち国際収支が する (ゼロとなる) 為替レート水準e*に 落ち着きます。 このように、 為替レートの調 調整により国際収支は均衡に向かいます。 復習 Movie 177 国際収支とは,一国における資金の流入 から流出を差し引いたものです。 Point! ですから、資金の流入とは、自国 通貨買い(=自国通貨の需要), 外貨 売り(=外貨の供給) となります。 PPoint! ですから、資金の流出とは、自国 通貨売り (=自国通貨の供給), 外貨 買い(=外貨の需要)となります。 図表27-5 外国為替市場と国際収支 I 為替レート (1$○○円) ドルの価格- 国際収支黒字 S 外貨超過供給 e1 ドルの 供給曲線 E e2 ドルの 需要曲線 外貨超過需要 国際収支赤字 D 取引量

未解決 回答数: 1