学年

質問の種類

数学 高校生

基本例題94(3)の解説黄線部(下から2行目) 代入・整理しても答えが違うので、計算過程を教えてください🙇

154 基本 例題 94 2つの円の交点を通る円 直線 ・・・・・・② について 2つの円は、異なる2点で交わることを示せ。 2つの円x+y=5 ...... 1, (x-1)2+(y-2)²=4 (1) (2) 2つの円の交点を通る直線の方程式を求めよ。 (3)2つの円の交点と点 (0, 3) を通る円の中心と半径を求めよ。 CHART & THINKING (1) 2つの円の半径と中心間の距離の関係を調べる。 000 基本 77, p. 139 基本事項 (2)(3)2つの円の交点の座標を求めることは面倒。 そこで、 次に示すか.129 基本例題 77 の考え方を応用してみよう。 2曲線 f(x,y)=0,g(x,y)=0 の交点を通る曲線 方程式 kf (x, y)+g(x,y)=((は定数)を考える ①,②を形にして,k(x+y2-5)+(x-1)+(y-2)^-40 ③ とすると, ③は2つの円の交点を通る図形を表す。 (2) ③が直線を表すときのんは? (3)③が点 (0, 3) を通るときのは? 解答 (1)円 ①,② の半径は順に5,2である。 2つの円の中心(0,0),(1,2)間の距離をdとすると d=√12+22=√5から √5-21<d<√5+2 よって, 2円 ① ② は異なる2点で交わる。 (c)+( (2)k(x2+y2-5)+(x-1)+(y-22-40(kは定数)・・・・・・ ③ とすると,③は2つの円①,② の交点を通る図形を表す。 これが直線となるのは k=-1のときであるから, ③ に k=-1 を代入すると +(x-1)+(y-2)2-4=0 x+2y-3=0 (3)③ (03) を通るとして ② 半径2 (2) 2, (3) -k= 1 x k=-1 Ir-r'<d<rty' inf③は円 ①を表す ことはできない。 ③がxyの1次式と なるように, kの値を 定める。 inf (2) の直線の方程式 と①の円の方程式を連 立させて解くと,直線と 円の交点, すなわち2つ ①と②の交点が求 められる。 (x2+y2-5) 整理すると ③ に x=0, y=3 を代入して整理 ① すると4k-20 よって k= 1/2 半径5 20% これを③に代入して整理すると (2)+(14)-20 29 9 よって中心 ( 31 ) 2 2 3' /29 半径 - Ee 3 RACTICE 942 k(02+32-5) +{(-1)^+1-4}=0 2つの円x2+y2=10,x2+y2-2x+6y+2=0 の2つの交点の座標を求めよ。 また, 2つの交点と原点を通る円の中心と半径を求めよ。 0

未解決 回答数: 1
数学 高校生

数学の問題です。110で最小値を求めるのに直線と点の距離の関係の公式を右のノートで使っているのですが何故か答えがあいません。答えは1/2で私は-5/4だと思いますなぜですか?

x-y 0から 求める a, b の条件は,①,② から, [b≦a+5 b 62-2a-1 b≥a+5 または と と同値である。 b≤-2a-1 よって、 求める領域は図の斜線部 分。 ただし、境界線を含む。 -5 -2_1 [inf. F f(x, y) =ax-y+b として, f(-1, 5)f(2,-1)≦0 と考えることもできる。 3章 14,67 PR ・607 M 4週間でのAの生産台数をx, Bの生産 台数をyとすると,条件から 組立 18 A 6 時間 2時間 x0,y≧0, B 3 時間 5時間 6x+3y≦18・4, 2x+5y ≦10・4 すなわち x = 0, y≧0, 2x+y≦24, 2x+5y≦40 離は この連立不等式の表す領域は右の図 の斜線部分である。 ただし, 境界線 を含む。 合計生産台数をkとすると YA PR ある工場で2種類の製品 A, B, 2人の職人MWによって生産されている。 製品Aについて ③109 は 1台当たり組立作業に6時間,調整作業に2時間が必要である。 また, 製品Bについては, 組立作業に3時間,調整作業に5時間が必要である。いずれの作業も日をまたいで継続するこ とができる。 職人Mは組立作業のみに, 職人Wは調整作業のみに従事し,かつ, これらの作業に かける時間は職人Mが1週間に18時間以内, 職人W が 1 週間に 10 時間以内と制限されている。 4週間での製品 A,Bの合計生産台数を最大にしたい。 その合計生産台数を求めよ。 W [岩手大] infx, y がいくつか の1次不等式を満たすと xyのある1次式の 値を最大または最小にす る問題を線形計画法の間 題といい, 経済の問題で も利用される。 最大16:07 (2)(46) b=6 6=-20 + 調整 -644 半径 6= 1-2151 い 2 2 k=x+y y=-x+k (10,4) これは傾きが-1, y切片がんの直線 を表す図から, 直線 ①が点 (10,4) を通るとき,kの値は最大になり k=10+4=14 O 12 ←直線①の傾きが-1 から,領域の境界線の傾 きについて 5 6 =kta -2<-1<-2 したがって,合計生産台数は最大14台である。 ← A10台 B 4台 ←14.51 16=9-4=21 PR 座標平面上の点P(x, y) が 3y≦x +11, x+y-5≧0,y≧3x-7 の範囲を動くとき, @110 x+y2-4y の最大値と最小値を求めよ。 与えられた連立不等式の表す領域 Dは, 3点A(1, 4), B(3,2), C(4,5) を頂点とする三角形の周 [類 北海道薬大] 境界線の交点 A, B, C C の座標はそれぞれ次の 連立方程式を解くと得ら れる。

解決済み 回答数: 1