学年

質問の種類

数学 高校生

高校数学IIです!! (1)(2)両方わかりません!!特に写真の紫と赤で色がつけられてるところがわかりません。 どなたかよろしくお願いします🙇‍♀️

358 第6章 微分法 例題 181 微分係数代 5f(x)-xf(5) (1) 微分係数の定義に従って lim xx-5 f(a+h)-f(a-2h (2) 微分係数f' (a) の定義に従って lim f' (a) で表せ. h-0 **** f(5) f'(5) で表せ (東京薬科大) を (防衛大改) 考え方 (1) f'(5)=lim f(x)-f(5) (2)f'(a)=lim flat ○)-f(a) h→0 5 x-5 5f(x)-xf(5) 解答 (1) lim →5のままで考える。 5 x-5 =lim {f(x)-f(5)}を作るた 5 ,5f(5) を引いて加え JAR Focus >>>> 練習 [181 ** =lim 5 5f(x)-5f(5) +5f(5)-xf(5) x-5 5{f(x)-f(5)} -f(5)(x-5) +lim x-5 5 x-5 微分係数の定義 limf(x)-f(5) x+5 x-5 =5f'(5)-f(5) -+lim{-f(5)} 5 (2) limf(a+h)-f(a-2h) -0 h limf(a+h)-f(a) +f(a)-f(a-2h) =lim h-0 f(a+h)-f(a) h -lim h h→0 fla-2h)-f(a) h =limf(a+h)-f(a) h -(-2)-lim f'(a)+2f'(a)=3f'(a) f(a-2h)-f(a) -mil f(a+h)-f(a)を作る f(a)を引いて加え 分子のα-2hに合 分母も2hにし 前に2を掛ける. h→0 -2h h0のとき2 f'(a)=limf(x)-f(a) f' (a)=lim f(a+)-f(a) x-a x-a ●は例題181(2)のように、んではなく-2hになる場合もあるが、2箇所の →0のときでないといけない.ただし, lim の下はん→0のままでより また、例題181 の解答では,次の性質を利用している. (kは定数) limkf(x)=klimf(x), lim{f(x)±g(x)}= limf(x) limg(x) (複号同 xa x a →ロ x-a (1) 微分係数 f' (a) が存在するとき, 極限値 lim 用いて表せ。 xa f(a+3h)-f(a) 4-0 h (2) 微分係数 f'(a) の定義に従って limf(a-h)-f(a+3h) て表せ. h→0 をf'(

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0