学年

質問の種類

数学 高校生

写真の質問に答えてください!

求めるのは、第n群の初項と末項です。 さきほどもとの数列の一般項を求めたので、 第n群の初項が全体で見ると第何項なのかがわかれば、 求めた に代入して、その値が求められるはずです。 では、第n群の初項は全体で見ると第何項でしょうか? nに簡単な数字を代入してみましょう。 例えば、 n=4として第4群の初項が全体で見ると第何項かは、 以下のように考えられます。 「第1群には1個、 第2群には3個、 第3群には5個の項があるから、 第3群までで1+3+5=9個の項が ある。 だから、 第4群の初項は、 9+1=10より全体で見ると第10項だ。 そして、第4群の末項は同じように考えて 1+3+5+7=16より第16項だ。」 これと同じことをすればよいのです。 一般的に考えてみましょう。 第1群には1個、 第2群には3個、第3群には5個の項が含まれます。 つまり、第k群に含まれる項の個数が、 という等差数列になっていることがわかります。 この等差数列の一般項は、 bk=2k-1ですので、第k群には2k-1個の項が含まれることになります。 よって、n-1群の最後の項までに全部で n-1 an= 2n n-1 個の項があります。これを計算すると、 k=1 bk = 1, 3, 5, 7... Σ(2k-1) k=1 Σ(k-1)=n(n-1)-(n-1) =(n-1)² となります。つまり、第n-1群の末項は、 全体で見ると第(n-1)2項です。 元々の公式と変形方法 よって、第n群の初項は、全体で見ると第(n-1)2+1項であるといえます。したが 第n群の最初の 項は、 を教えてください a(n-1)2+1 = 2{(n-1)2 +12 青ラインの式は初項を求める ために使っているだと思います が、元々の公式を変形させた のですよね? = 2(n-1)2+2

未解決 回答数: 1
数学 高校生

写真2枚目の①に③を代入する所の途中式がわからないので教えてほしいです!どこに何を代入するのかもわからないので教えて頂きたいです🙏🏻🙇🏻‍♀️

第3問 数列 等差数列{an}の初項を α1, 公差をdとすると a2=2 より である. これを解いて である. 次に a₁ = 6 d = である. よって,数列{an}の一般項は であり a+a2+a+as=0 a₁ +d=2 (a₁ + (a₁ +3d)} = 0 によって定まる数列{bn} について考える. ① において, n=1 とすると b=1,bn+1=26-4n+10 (n=1, 2, 3, …..) Cn+1 an=6+(n-1)(−4) -4n + 10 である. ① において, n を n +1 とすると bn+2=2bn+1-4(n+1)+10 (n=0, 1, 2, ...) である. ①,② より bn+2-bn+1=2(bn+1-bn)-4 (n=1, 2, 3, ...) が得られる.Cn=bn+1-6n (n=1,2,3,...)であるから C1=b2-b1=8-1=| 7 b2=261-4+10 =2・1-4+10 = 8 2 Cn+1= Cn- が成り立つ。これを変形すると Cn= である. これより Cn 4 4 より, 数列{cm}の一般項は 3 ・ -4-2(cm-4) (n=1, 2, 3, ...) であるから, 数列{C-4} は初項 C1-4=7-4=3, 公比2の等 比数列である。よってC, C-432n-1 (n=1, 2,3,...) (n=1, 2, 3, ...) 2 [n-1 + 4 は 等差数列の一般項 初項a,公差dの の一般項は 等差数列の和 初項 α の等差数列{ ら第n項までの和Sn は S₁=(a₁ + a 階差を求める時は -) b₂+1=2b₂ bn+2=26+1-4(n+1)+10 - 4n bn+2-bn+1=2(bn+1-b₂-4 entl 漸化式 an= a₁ + (n − ntiato spec Cn+1=pC+q (n=1,2,3,..) (p,qは定数, 0, 1) a=patq を満たすα を用いて と変形できる. 等比数列の一般項 Cn+1-α=p(cn-a) 列 {an}の一般項は +10 … ① 初項をa,公比をrとする等比数

解決済み 回答数: 1