学年

質問の種類

物理 高校生

・1枚目の写真の基本例題21(3)の解説で 式は0+1/2×50×x²とありますが(2)のB地点での位置エネルギーは0なのに、なぜ(3)ででてくる位置エネルギーはなぜ0じゃないんですか? ・2枚目の写真の基本例題22(2)の問題で解説には運動エネルギーと重力による位置エネル... 続きを読む

48 第1編■運動とエネルギー 基本例題 21 力学的エネルギーの保存 104~108 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつな がっており、点Cにばね定数50N/m の長いばねが つけてある。 水平面 BC から 2.5mの高さの点Aに 質量 2.0kgの物体を置き, 静かにすべり落とした。 ただし、重力加速度の大きさを9.8m/s2 とし, 水平面 BC を高さの基準にとる。 (1) 点Aでの物体の力学的エネルギーは何Jか。 2.5m B C (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力) による運動では, 力学的エネルギー (運動エネルギー Kと位置エネルギーUの和) は一定に保たれる。 すなわち K+ U =一定 解答 (1) KA+ UA=0+2.0×9.8×2.5 =49 J (3)(2)と同様に, K+U=KA+UA (2) 力学的エネルギー保存則により ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 KB+UB=KA+UA よって 0+1×50×x=49 1 よって -×2.0×2+0=49 2 v2=49 x²= = 49_7.02 ゆえに x=1.4m ゆえにv=7.0m/s 25 5.02

解決済み 回答数: 1
物理 高校生

式の立て方はわかるのですが、どうして振動の中心が変わるのかわかりません。教えて頂きたいです🙇

52. <あらい面上で振動する物体の運動〉 ばね定数 質量m 図のように, 水平なあらい床の上に質量mの物 体が置かれている。 物体はばね定数んのばねで壁と つながっている。 右向きにx軸をとり, ばねが自然 の長さのときの物体の位置を原点とする。 次の問い に答えよ。 ただし, 重力加速度の大きさをgとする。 物体を原点より右側で静かにはなす実験を行った。物体を位置 d(> 0) より左側ではなす とそのまま静止していたが,右側ではなすと動きだした。 (1) 物体と床の間の静止摩擦係数μを求めよ。 0 x 物体を位置 x(>d) から静かにはなすと, 物体は左向きに動きだした。 その後, 物体の速 さは位置 x1 (<-d)で初めて0となった。 (2) 物体と床の間の動摩擦係数μ' を求めよ。 (3)物体の加速度をαとして,左向きに運動している物体の位置xでの運動方程式を示せ。 (4) 物体が x から x1 に移動するまでにかかった時間を求めよ。 (5)xo から x1 に移動する間で, 物体の速さが最大となるときの位置と速さを求めよ。 その後, 物体は右向きに動きだし, ある位置 (>d) で再び速さが0となった。 (6)x1 から再び速さが0となった位置に移動する間で, 物体の速さが最大となるときの位置 を求めよ。 (7) 物体の速さが再び0となった位置 x2 を x と x1 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

高知大学の過去問です。 画像の問2の答えの出し方が分かりません。 運動量保存則と反発係数の式は立てれましたが、そこから答えにたどりつけません。どうやって解くのでしょうか。 至急教えて頂きたいです。

2023年度 高知大 1 図1に示すような。 滑らかな面 AB, CE を有する台上における物体の運動について考える。 AD 間は水平面, DE 間の形状は鉛直に直径2R[m] を有する半円である。 また, 長さ L[m] の区 BCは粗い面となっている。 はじめに 点Aにばね定数k [N/m)のばねの一端を台に固定し, 他端に質量 M [kg] の物体a を取り付け. ばねが自然長の状態で物体に接するように質量m[kg] の物体b (m <M)を置いた。 物体 a, b の大きさ, ばねの質量 空気抵抗は無視できるものとす る。また物体と物体bの間のはねかえり係数をe. 物体b と面BCの間の動摩擦係数をμ 重力加速度の大きさを〔m/s*〕とする。 このとき,計算過程を含めて、 以下の問いに答えよ。 (70点) 1.図2に示すように物体a を左に押してばねを d[m]だけ縮め、静かに手を離した。この時 物体 b に衝突する直前 (図3)の物体の速さ Vo [m/s] を 求めよ。 2. 物体が物体bに衝突した直後(図4) における それぞれの速さ V [m/s] [m/s] を求めよ。 図1 L 2R A B CD 図2 wwo KI 図3 V₁ www 3. 衝突直後に物体は AB間で単振動を始めた。 その振幅 X (m) を求めよ。 図4 V₁ 01 wwG 問1, ばねの弾性力による位置エネルギーと 運動エネルギーは等しいので Vo' = M d² Vo=dJ [m/s] 問2.物体a,bについて運動量保存則より MV=MV1+mvi 反発係数の式より、 V₁-V evo -evo=サーV1 4. 物体は回転せずに区間 BCを通過した。 区間 BCを通過後(図5)の物体bの速さ102 [m/s] を求 めよ。 図5 5. 物体b は区間DEを面から離れずに通過した (図6)。 このときに,点Eを通過する際の速さ [m/s] が満たすべき条件を示せ。 また、その条 件を満たすの最小値を求めよ。 図6 www 6. 物体bが点Eを通過する瞬間に ばねが最も伸びたとする。 そして 物体 b が水平面 AD 着したときに物体がちょうど1往復した。 そのときのkをR,M を含む形で求めよ。 問1,Vo= d [m/s] 問2、V= M-em d JE m+M (1+e)d M m+M [m/s] [m/s] 問5V3≧JOR [m/s] 12の最小値 [SgR [m/s] 問6,b=gM [N/m]

解決済み 回答数: 1