学年

質問の種類

数学 高校生

数学についてです 赤線で引いてある部分がよくわかりません なぜ余りを割るという操作をするのかわからないです 具体例など出してくださると嬉しいです わかる方お願いいたします。

基本 例題 56 剰余の定理利用による余りの問題 (2) 多項式P(x) を x+1で割ると余りが-2, x2-3x+2で割ると余りが-3x+7 であるという。このとき,P(x) を (x+1)(x-1)(x-2) で割った余りを求めよ。 指針 例題 55と同様に、割り算の等式 A=BQ+R を利用する。 基本55 重要 57 3次式で割ったときの余りは2次以下であるから,R=ax2+bx+cとおける。 問題の条件から、このα,b,c の値を決定しようと考える。 別解 前ページの別解のように,文字を減らす方針。 P(x) を (x+1)(x-1)(x-2) で割ったときの余りを,更にx3x+2 すなわち (x-1)(x-2) で割った余りを考 える。 P(x) を (x+1)(x-1)(x-2) で割ったときの商をQ(x), 解答 余りをax2+bx+c とすると,次の等式が成り立つ。 ...... P(x)=(x+1)(x-1)(x-2)Q(x)+ax2+bx+c ここで,P(x) を x+1で割ると余りは−2であるから ② P(-1)=-2 ① 3次式で割った余りは, 2 次以下の多項式または定 数。 また,P(x) を x-3x +2 すなわち (x-1)(x-2) で割った ときの商をQi(x) とすると B=0 を考えて x=-1, 1,2 を代入し, a, b, cの値 を求める手掛かりを見つ ける。 P(x)=(x-1)(x-2)Q1(x)-3x+7 ゆえに P(1)=4 ...... ③, P(2)=1 ...... ④ よって, ①と②~④より a-b+c=-2, a+b+c=4,4a+26+c=1 この連立方程式を解くと a=-2,6=3,c=3 したがって 求める余りは (第2式) - (第1式) から 266 すなわち 6=3 (2) 指 2x2+3x+3 別解 [上の解答の等式① までは同じ ] x2-3x+2=(x-1)(x-2) であるから, (x+1)(x-1)(x-2)Q(x)はx-3x+2で割り切れる。 ゆえに,P(x) をx2-3x+2で割ったときの余りは, ax2+bx+cをx2-3x+2で割ったときの余りと等しい。 P(x) をx2-3x+2で割ると余りは-3x+7であるから ax2+bx+c=a(x2-3x+2)-3x+7 よって,等式①は,次のように表される。 P(x)=(x+1)(x-1)(x-2)Q(x)+α(x2-3x+2)-3x+7 したがって P(-1)=6a+10 P(-1)=-2であるから 6a+10=-2 よって a=-2 求める余りは-2(x2-3x+2)-3x+7=-2x+3x+3 この解法は、下の練習56 を解くときに有効。 ax2+bx+c を x2-3x+2で割ったとき の余りをR(x) とすると 商は αであるから P(x) (水) =(x+1)(x-1)(x-2)Q(x) +α(x2-3x+2)+R(x) =(x2-3x+2) {(x+1)Q(x)+α}+R(x)

未解決 回答数: 1