学年

質問の種類

数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0
数学 高校生

青チャート数ⅠAより例題60 指針「a+b‪√‬2=0であって…a=0となるから、」までは理解できるのですが、そこからなぜ「a+b‪√‬2=ならばb=0」となるのでしょうか? なぜa=b=0なのにb=0のみにするのか分からなかったのですが、こういうことですか? b=0の場... 続きを読む

基本 例題 60 有理数と無理数の関係 00000 (1) a, b が有理数のとき,a+b√2=0ならば a=b=0であることを証明せよ。 ただし,√2 は無理数である。 (2) 等式 (2+3√2)x+(1-5√2)y=13 を満たす有理数 x, yの値を求めよ。 [ (2) 奈良大] 重要 53 基本58 指針▷a+b√2=0であって b=0 のとき,a+0√2=0からa=0 となるから,命題 「α, b が有 理数であるとき,a+b√20ならば6=0」 を証明する。 Th 直接証明するのは難しいから, 背理法を利用する。 具体的には, 「a+b√2=0であって60である有理数 a, b がある」 として矛盾を導く (命題の否定は例題 53 参照)。 背理法では命題が成り 立たないと仮定して矛 盾を導く。 解答 (1) a+b√2=0であってb=0である有理数 α, bがある, と仮定する。 60である有理数 6があるとすると, a+b√2=0 から √2-a b ① a b は有理数であるから,①の右辺は有理数であるが,こ有理数の和差積・商は 有理数である。 れは √2 無理数であることと矛盾する。 したがって 「α, b が有理数であるとき, a+b√2=0ならば6=0」 a+b√2=0であって6=0のとき, α = 0 であるから, a b が有理数のとき a+b√20ならば a=b=0である。 (2) 与式を変形して 2x+y-13+(3x-5y)√2=0 x, y が有理数のとき, 2x+y-13, 3x-5yも有理数であり, √2 は無理数であるから, (1) により 2x+y-13=0 ① ② を連立して解くと ①, 3x-5y=0 x= 5, y=3 *****. ② a+b√2=0 の形に。 の断りは重要。 「

解決済み 回答数: 1