学年

質問の種類

数学 高校生

<1>(2)の線を引いたところをどこから導いたのか、<2>(1)の考え方を解説お願いします🙇🏻‍♀️書き込みは無視してください

数学Ⅰ・数学A 第4問 (選択問題) (配点20) 〔1〕 (1) 不定方程式 と表せる。 第3問~第5問は,いずれか2問を選択し、 解答しなさい。 (2(x-8)-19 (2-3) ₂0 (2) 整数 s, tを用いて ウエ s+ 2= 12x-19y=1 を満たす整数x,yの組のうち、 xが正で最小になるものは x= ア y= イ であるから,この不定方程式の整数解はんを整数として x= ウエ k+ ア y=オカ k+ イ と表せる。 x-8=19k 27. 46 tuakts osi = オカ t+ 12.24 36 4860728496 1938577695 ア と表せる整数zについて考える。 このように表せる整数のうち, 正で最小のものはキクである。 また, このように表せる整数zをすべて求めると, uを整数として z= ケコサu+ キク 29 84 549 塩 イ A ? (4 x4 736 (数学Ⅰ・数学A 第4問は次ページに続く。) 7° 1977 10198 730 105 416 62 38 57 + & t& 数学Ⅰ・数学A 〔2〕 自然数Nは7進法で9桁で表されるとする。 Nを7進法で表したときに, *上から3桁ずつ区切って得られる数を順にa,b,c とする。 たとえば,N=123456012 (7) とするとa=123(n)=66,6=456=237, c=12 (7)=9である (1)a+b+cが2の倍数であれば, a,b,cの値にかかわらずNは2の倍数 であることを証明しよう。 まず, Nはa,b,c を用いて 図+6×7 N=ax70 +c と表せる。 また仮定より, 整数dを用いて a+b+c=2d と表せる。 このこ とから N=2{d+ センタ (344a+b)}る となるので, Nは2の倍数である。 DAS (2) (1) の証明と同じ方法を用いると, a+b+cが2以外の倍数のときでも, 同じ方法で倍数を判定できるものがある。 を2以上の整数として,次の命題を考える。 OPI ・命題 a+b+cmの倍数であれば, a, b,cの値にかかわらずNはmの 倍数である。 I 命題が真となるようなmのうち, 素数であるものはm=2, ツテである。また, 命題が真となるような2以上の整数mは, (1) で証明し たm=2のときも含めて, 全部でトナ個ある。 27 チ

回答募集中 回答数: 0
数学 高校生

答えや解説を見ても分からないのでもう少し詳しく解説してくださる方がいましたらお願いします🙇🏻‍♀️

重要 例題29 ユークリッドの互除法と1次不定方程式 (1) 不定方程式 161x+19y=1を満たす整数x,yの組の中で, xの絶対値が最| ①小のものはx=アイ,y=ウエである。 (2) 不定方程式 161x+19y=5 を満たす整数x,yの組の中で, xの絶対値が最 a 大量 小のものはx=オ,y=カキクである。 POINT ! 1次不定方程式の整数解の1組が容易に見つからない場合は, ユークリッドの互除法を用いる。 ( 51 参考) (2) (1) の等式の両辺を5倍すると 161(5x) +19(5y)=5 よって,(1) で見つけた整数解の1組をそれぞれ5倍したものは 161x+19y=5の整数解の1組である。 解答 (1) 161x+19y=1 161=19.8+9 19=9・2+1 この計算を逆にたどると 1=19-9・2 01- =19-(161-19・8)・2 =161・(-2)+ 19・17 ① とする。 移項すると 9161-19・8 移項すると 119-9・2 ...... (2-8-) (ar- したがって 161・(-2)+19・17=1 ① ② から 161(x+2)+19(y-17) = 0 161 と 19 は互いに素であるから、③より ...... (2) 161x+19y=5 ②から ④ - ⑤ から 161(x+10)+19(y-85)=0 161 19 は互いに素であるから, ⑥ より ..... (2) x+2=19k, y-17-161k (kは整数) よって x=19k-2, y=-161k+17 |x|が最小となるのはん=0のときであるから x=アイ- 2,y=ウェ17 ④ とする。 161・(-2.5)+19.(17・5)=5 ...... ⑤ ⑥ 1s)(3) ③ xの係数 161 とyの係数 19 にユークリッドの互除 法の計算を行う。 6518-5 x+10=19l, y-85-1617 (Zは整数) よって x=191-10, y=-161+85 |x|が最小となるのはl=1のときであるから x=オ9, y=カキクー76 ◆余りが1になったところ で,計算を逆にたどる。 0 ← ① を満たす 1組の解 01-x=-2,y=17 が得られる。 al- a I & meroun SHOR H.260 •②×5 とすると, ④ を満た す1組の解x=-10, |y=85 が得られる。

回答募集中 回答数: 0
数学 高校生

(1)で互除法で計算していく過程について質問します。 =関係で結ばれた値において解答では、x-4=6kとしていますが、x-4=-6k(2枚目写真)としてはいけないのでしょうか?

508 基本 例題128 1次不定方程式の整数解 (2) ax+by=c 次の方程式の整数解をすべて求めよ。 4(1) 7x+6y=40 メ (2) 37x-90y=4 基本 127 演習131 指針>O ax+by=c の整数解 が第一の方針。 の ない。そこで,(2)では, 次の方針による解答を考えてみよう。 1 aとbの最大公約数を 互除法によって求め.その計算過程を逆にたどる。 1組の解(b, q) を見つけて a(xー)+6(y-q)=0 しかし,(1)は比較的見つけやすいが,(2) は簡単に見つから …特に、1=ap+bq の形が導かれたら,両辺をc倍して a(cp)+6(cq)=c 2 係数を小さくして (本書では 係数下げ と呼ぶ), 1組の解を見つけやすくする。 なお, 検討 として, 3 合同式を利用する 解法も取り上げた。 味 ージ糖 解がすぐに見つからなければ 互除法 または係数下げ CHART 不定方程式の整数解 うにと 解答 (1) x=4, y=2 は7x+6y=40 の整数解の1つである。 7(x-4)+6(y-2)=0 7(x-4)=D-6(y-2) 7と6は互いに素であるから, kを整数として (7x+6y=40 から 7x=2(20-3y) よって, x は2の倍数であ る。このようにして, 方程 式を満たす整数解を見つけ る目安を付けるとよい。 ゆえに,方程式は すなわち x-4=6k, -(y-2)=7k と表される。 x=6k+4, y=-7k+2(k は整数) よって,解は

未解決 回答数: 1