学年

質問の種類

数学 中学生

2023 市川高等学校 数学 (3)の詳しい解説をお願いします。

13 X. Yの2人が次の問題の解き方を相談しながら考え ている。 n番目に 4n-5 が書かれている数の列Aと, 7番目に n2-2n-1 が書かれている数の列Bがある。 ただし, nは自然数とする。 A,B を書き並べると, A: -1, 3,7, 11, 15, B: -2, -1,2,7, 14, A. Bに現れる数字を小さい順に並べた数の列をCとす るとき, 2023はCの中で何番目に現れるか。 X : 途中過程を書きやすいように, A. Bの番目の数を それぞれ an, b, と表すことにしよう。 Y : 例えばAの3番目の数は a3 で, 計算は4n-5に n=3 を代入した7になるから,a3=7と書けばいい んだね。 同じようにBの10番目の数を求めると, b10=アとなるね。 X : では, A,Bの規則性を見てみよう。 Aは an=4n-5 だから最初の -1 から4ずつ増えていく ことと,奇数しか現れないことがわかるけど, B はど うだろうか。 Y:bm=n²-2-1 だけど規則が読み取りにくいね。 規 則を見つけるために隣り合う数の差をとってみようか。 (n+1) 番目の数からn番目の数を引いてみよう。 X: b = n2-2n-1 だから bn+1-bn={(n+1)2-2(n+1)-1}-(n2-2n-1) =2n-1 となるね。 Y : ということは, 隣り合う数の差が必ず奇数だからBは 偶数から始まって偶数と奇数が交互に現れるね。 だけ ど,これだけではまだ特徴がわからないな。 X : そうしたら次はもう1つ離れた数との差をとってみよ うよ。 (n+2) 番目の数からn番目の数を引いてみよう。 Y: bn+2 -b を計算するとイ となるね。 X : わかった。 これと今までわかっている特徴を合わせる と問題が解けるね。 (1) ア イにあてはまる式や値を答えよ。 (2) Bの数の列において, 2023が何番目か求めよ。 (3) Cの数の列において, 2023が何番目か求めよ。 問題↓解説↑ 3 (1)(イ) bn+2=(n+2)-2(n+2)-1 =n2+2n-1より, bn+2-6m=n2+2n-1- (n2-2n - 1) = 4n (2) n2-2n-1=2023 (n+44)(n-46) = 0 n>0より, n = 46 (3)4n5= 2023 n= ¥507 より, Aの列において, 2023は507番目の数である。 Cの数の列において 2023までの数の個数は, A の数の 列における 2023 までの数の個数と、Bの数の列における 2023 までの数の個数の和からAの数の列とBの数の列に 共通する2023 を含めた数の個数を引けばよい。 A の数の 列とBの数の列に共通する数の列Dを書き並べると, D: -1, 7,23,47, ...... DはBの偶数番目の数が並んでいるから, n番目の数を dn とすると, dn=bzn=(2n)2-2 × 2n-1=4n²-4n-1 4n²-4n-1=2023 n2-n-506 = 0 >0より, n=23 (n+22) (n-23) = 0 よって, Cの数の列において, 2023 は, |507 +46-23530 ( 番目)

未解決 回答数: 0
数学 高校生

1/2をかけてる理由が分かりません。

380数学 B 練習 白球が3個, 赤球が3個入った箱がある。 1個のさいころを投げて, 偶数の目が出たら球を3個 ② 62 奇数の目が出たら球を2個取り出す。 取り出した球のうち白球の個数を X とすると,Xは確率 変数である。 Xの確率分布を求めよ。 また, P(0≦x≦2) を求めよ。 Xのとりうる値は X= 0, 1, 2, 3 [類 福島県医大] [1] X = 0 となるのは, 偶数の目が出て赤球3個を取り出すか ←個→赤3の事象と 奇数の目が出て赤球2個を取り出すときである。 寄 赤2の事象は互い 排反 よって、P(X=0)=1/2003+/12/16-12/20/20/1/3)=1 5 40 加法定理 C2 [2] X=1となるのは, 偶数の目が出て白球1個と赤球2個を 取り出すか, 奇数の目が出て白球1個と赤球1個を取り出す ときである。 よって P(X=1)= 1 3C1 3C2 1 3C1 3C1 + 2 6C3 2 6C2 21 = 1 9 3 = + 20 5 40 [3] X = 2 となるのは, 偶数の目が出て白球2個と赤球1個を 取り出すか, 奇数の目が出て白球2個を取り出すときである。 よって P(X=2)=1/2 1 3C2*3C1 1 3C2 + 6C3 2 6C2 1 / 9 13 = + b1d 2\20 40 [4] X = 3 となるのは, 偶数の目が出て白球3個を取り出すと ←球を3個取り出せるの きである。 よって P(X = 3) = 1/1.303 1 3C3 1 1 = · 2 20 40 は、偶数の目のときのみ [1]~[4] から, Xの確率分布は次の表のようになる。 また X 0 1 2 3 計 5 21 13 1 ① P 1 40 40 40 40 1 39 (*) 40 40 P(0≦x≦2)=1-P(X=3)=1- (*) P(0≦x≦2) =P(X=0)+P(X=1) +P(X=2) として求め てもよいが、余事象の 率を利用する方が計算 らく。

回答募集中 回答数: 0
数学 高校生

207.3 実数の範囲で考えているので、「虚数解をもつ」という記述は正しくないと聞いたのですが、どこからこの問題は実数の範囲で考えていることが読み取れるのでしょうか??

基本例題207 3次関数が極値をもつ条件, もたない条件 ①①①①① (1) 関数f(x)=x3+αx2が極値をもつとき,定数aの満たすべき条件を求めよ。 (2) 関数f(x)=x6x2 +6axが極大値と極小値をもつような定数aの値の範囲 を求めよ。 (3) 関数f(x)=x+ax2+x+1が極値をもたないための必要十分条件を求めよ。 ただし,αは定数とする。 春 基本 201,206 重要 210 指針 3次関数f(x) が極値をもつ ⇔f'(x) の符号が変わる点がある CBD 44 f(x)=0が異なる2つの実数解をもつ ⇔f'(x)=0 の判別式 D>0 D =a²-3.0=a² 4 ===++ ここで ゆえに (a+√3)(a-√3) 20 4 と D>0 ここで ゆえに, ²0 から a=0 (2) f'(x)=3x²-12x+6a=3(x²-4x+2a) (220) f(x) が極大値と極小値をもつための条件は,f'(x) = 0 が異 なる2つの実数解をもつことである。 Ja よって、x²-4x+2a=0の判別式をDとすると 4=(-2)^-1・2a=4-2a から4-2a>0より (3) f'(x)=3x2+2ax+1 f(x) が極値をもたないための必要十分条件は、 f'(x) の符号 が変わらないことである。ゆえに, f(x)=0 すなわち 3x2+2ax+1=0 実数解をもたない。 よって, ① の判別式をDとすると 極大 x=α P=a²-3.1=(a+√3)(a-√3) 解答 (1) f'(x)=3x2+2ax ①の判別式 f(x) が極値をもつための条件は,f'(x) = 0 が異なる2つの実 3次関数が極値をもつとき, 数解をもつことである。 3x²+2ax=0 の判別式をDとする 極大値と極小値を1つずつ もつ。 x(3x+2a) = 0 から x=0, -a D>0 a <2 ・・・・・・ ① は実数解を1つだけもつかまたは ( 3の係数)>0のとき y=f(x) / x=B₁ 極小 よって -√3≦a≦√3 よって α=0 としてもよい。 (3) V y=f'(x) / V D=0 D≦0....... (*)DO DI y=f(x) / (*) D<0は誤り。 y=f'(x) x har極大値と極小値をもつとき、 定数 αが 6: 3 関数の増減と極大・極小

未解決 回答数: 0
数学 高校生

1枚目のan≠0となる証明は理解できたのですが、 2枚目のa1=1>0、an+1=2√an>0より全ての自然数はnに対してan>0であるのはよくわかりません。また、「ーに対してan>0」ってどう言う意味なのでしょう??

基本例題 119 an+1= ST によって定められる数列{an}の一般項を求めよ。 [類 早稲田大〕 基本116 2 an+1= 指針 漸化式 αn+1= an 4an-1 an のように,右辺の分子が α の項だけの場合の解法の手順は panta ① 漸化式の両辺の逆数をとると 答 CHART 漸化式 an+1= an+1= 1=b, とおくと bn+1=p+qbn an an 型の漸化式 bn+1=b+▲の形に帰着。 p.560 基本例題 116と同様にして一般項 bn が求められる。 また,逆数を考えるために, an=0(n≧1) であることを示しておく。 ところが α= panta したがって an ...... ① とする。 SORTIO 4an-1 ① において, an+1=0 とすると α = 0 であるから, an=0 とな るnがあると仮定すると an-1=an-2==q=0 an= 1 a₁=²/²/² ( (0) であるから,これは矛盾。 よって,すべての自然数nについて αn≠0 である。 ① の両辺の逆数をとると 1 an+1 an 両辺の逆数をとる panto 1 bn 9 -=-= an an+1 =4- bn+1=4-bn an bn+1-2=-(bn-2) 1 = b とおくと an これを変形すると また 1-2=5-2=3 b1-2=- a1 ゆえに,数列{bn-2} は初項 3,公比 -1 の等比数列で bn-2=3.(-1) すなわち bn=3・(-1)"'+2 1 3.(-1)"¹+2 19 00000 Egon an=05 an-1=0 これから an-2=0 以後これを繰り返す。 33d= 逆数をとるための十分条件。 1 an+1 THO Jia Il si ◄bn= 4an-1 an 特性方程式 α =4-α から α=2 an bn=0 という式の形から 565 3章 15 漸化式と数列 で , n). き き q 数 c)dx )に

未解決 回答数: 1
理科 中学生

問5がなぜ答えがイになるのか分かりません。 2、3枚目が問題です。解説には 水酸化バリウム水溶液の濃度を2倍にすると、液中に含まれるイオンの数が2倍になるため、硫酸を中性にするために必要な質量は半分で、22.5÷2=11.25(g)となる。この時、水酸化バリウム水溶液を加... 続きを読む

カの中から一つ選び, その記号を書きなさい。 (4点) す。 加える水酸化バリウム水溶液の質量と生じる沈殿の質量の関係を表すグラフを, 次のア~ 実験1で使用した水酸化バリウム水溶液の質量パーセント濃度は1%でした。 うすい硫酸 N 5 の濃度を変えず, 水酸化バリウム水溶液の濃度のみを2%に変えて実験1と同じ操作を行いま 生じる沈殿の質量g 生じる沈殿の質量g 0.6 生 0.5 0.4 0.3 0.2 [g〕0.1 0.6 0.5 0.4 0.3 0 7.5 15.0 22.5 30.0 加える水酸化バリウム 水溶液の質量〔g〕 0.2 (g) 0.1 ア H 7.5 15.0 22.5 30.0 加える水酸化バリウム 水溶液の質量〔g〕 生じる沈殿の質量g 0.6 0.5 生じる沈殿の質量g 0.4 0.3 0.2 (g) 0.1 してき 0 0.6 0.5 0.4 0.3 0.2 7.5 15.0 22.5 30.0 加える水酸化バリウム 水溶液の質量 〔g〕 (g) 0.1 0 イ 0 4 生じる沈殿の質量g 0.6 7.5 15.0 22.5 30.0 0.5 0.4 0.3 0.2 (g) 0.1 生じる沈殿の質量g 20.6 0.5 0 加える水酸化バリウム 水溶液の質量〔g〕 0.4 0.3 0.2 (g) 0.1 四水 0 ウ 7.5 15.0 22.5 30.0 0 7.5 15.0 22.5 30.0 加水酸化バリウム加水酸化バリウム 水溶液の質量〔g〕 カ 50:

回答募集中 回答数: 0