学年

質問の種類

数学 高校生

-2は何から求めるのでしょうか?

基本 例題 10 逆関数の求め方とそのグラフ 00000 27 次の関数の逆関数を求めよ。 また、そのグラフをかけ。 (1) y=logx (2) y= 2x-1 (x20 x+1 p.26 基本事項 1 1個 CHART & SOLUTION 2 逆関数 について解いてとの交換 ① 定義域と値域に着目 ② グラフは直線 y=x に関して対称 逆関数の求め方 ① 関係式 y=f(x) を x=g(y) の形に変形。 ・・・ 0 ② xyを入れ替えて, y=g(x) とする。 ③ g(x)の定義域は、f(x) の値域と同じにとる。 (2)定義域に注意。 → まず, 与えられた関数の値域を調べる。 逆関数と合成関数 xの値がただ とき、変数 x (x)です。 f(x) (b, a) y=f(x P(a,b) (2)y= 含まれてい x) と(y) 解答 (1) y=logx をxについて解くと x=3" - xとyを入れ替えて y=3x グラフは右図の太線部分。 YA y=3 数学Ⅱの復習 y=x a>0, a≠1 のとき (E+ y=logax 3 y=log3x 2x-1 x+1 1 (x≥0) ...... ①を x=a³ 指数関数 y=α は 対数関数 y=10gax の逆関数。 であるか 0 1 3 x 2x-1_2(x+1)-3 = 3 x+1 x+1 変形して y=- +2 x+1 ①の値域は -1≤y 2 ①から (y-2)x=-y-1 y=2 であるから CK 4, x+1 (-1≤y<2) YA y= x+1 x-2 2x-1 y= x+1 2=0のときy=-1 ← x=0 のとき y=-1 ①の分母を払って y(x+1)=2x-1 から xy-2x=-y-1 +2 x+1 1 xとyを入れ替えて 2-1 OI 12 x+1 y=- (-1≤x≤2) x-2 グラフは右図の太線部分。 y=x -1-2 x-2 x+1__(x-2)-3 x-2 -1 (x) (Vest) x-2 I=(x)\ 1 定義 PRACTICE 10° S+S J 次の関数の逆関数を求め, そのグラフをかけ。 [(3) 湘南工科大] (1)y=2x+1 x-2 (2) y= (x≥0) x+2 (3)y=-- ---x+1(0≦x≦4) (4)y=x^2(x≧0) (x)(・)(1)

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0