学年

質問の種類

古文 高校生

このプリントの答えがわかる方いませんか?? 教えて欲しいです🙏

年( w - 8 助動詞のまとめ 次の()内の助動詞を、適当な形に活用させよ。 10日ごろは音にも聞き(つ)らむ。 日ごろにも(わが名を きっと聞いているだろう。 風光の人を感動せ (しむこと、まことなるかな。 女のまじかりけるを、 解析古典文法 四訂版 (火) 20 助動詞演習問題 女として)自分のものにできそうもなかった女を、 君はあの松原へふらせたまへ。 (家) 次の線の助動詞について、それぞれ基本形と文法的意味、文中 活用形を答えよ。 あなた様はあの松原 (中) へお入りください。 イ完了 を感動させることは、本当なのだなあ。 自然 (五) ア不可能 エ打消 過去 オ反実仮想 強意 ク ウ 尊敬 力使役 ケ 推定 ゆかしかり(き)と、神へ参るこそ本意なれと、 知りたかったけれども、神へ参することが本来の目的であると思って、 コ 現在推量 おとなしく知りぬ (べし)したる神官を呼びて、 年配で物を心得ていそうな顔をした神官を呼んで、 ⑤大井の民に仰せて水草を作らせ (らる) けり。 大井川沿いに住む土地の住人に命じて水車を作らせなさった。 次の傍線部の助動詞の文法的意味と活用形を答えよ。 やがて面影は推し量らるる心地するを、 (七) すぐにその人のかたちが自然と思い浮かぶ感じがするが、 「聞きしにも過ぎて、尊くこそおはしけれ」 (五二) 次の傍線部の助動詞の文法的意味として、最も適当なものを後から 選んで答えよ。 「噂に聞いたのにもまさって、尊くていらっしゃったことだ」 道知れる人もなくて、まどひ行きけり。 (九) ①咲きぬべきほどの、散りしをれたる庭など、 (1) 今にも咲いてしまいそうな(桜) (花) りいた庭など、 この木なからましかば、と覚えしか。 ( ) 道を知っている人もいなくて、迷いながら行ったそうだ。 わが入らむとする道はいとう細きに、 私が入ろうとする道はひどく暗く細いうえに、 のどかなる事は、もせず、やがてかけぬ心ととぬぬ 人は、一夜の中に、さまでかはるさまもみえめにやあらむ。の重 住する際なくして、死期既に近し。されども、いまだ病急なら 死におもむかざる程は、常にならひて、生の中におほ の事を成して後 しづかに道をせむと思ふほどに、病をうけて 死門にのぞむ時、所一事も成せず。 いふかひなくて、年月を 悔いて、この度もしたちなぼりて命を全くせば、夜を日につぎて、こ 事の事らず成じてひと、ひをおこすめど、やがて重り ぬれば、我にもあらず取り乱してはてぬ。このたぐひのみこそあら この事、まづ人々いそぎ心におくべし。 日本 日本 ex この木がないならば (どんなにかよかったのに、と思われた。 「いかに心もとなく思すらむ」と言ひて、 (十三ノ いまはてに、弓の音すなり。 (今昔物語・二五ノ一二) 言葉もまだ終わらないうちに、弓の音がするようだ。 「どこんなにか待ち遠しくお思いになっているだろう」と言って、 所を成じて後ありて道にむかはむとせば、所尽くべから 姫の生の中に、何事かなさむ。すべて所願妄想なり。 所 ならねども、これらにも、猫の経上がりて、 八九) 山ではないけれども、このあたりにも、年をとって、 心ありかかるにやあらむと思ひ疑ひて、 浮気心があってこのように寛大であるのだろうかと男は疑わ しく思って、 この人々の深志は、この海にも劣らざるべし。 この人々の深いは、この海の深さにも劣らないだろう。 ならましかば、かくよそに見侍らじものを。 一六七 私の専門であったならば、このように傍観していますまいものを。 徳大寺にもいかなる故かはべりけん。 (10) 大寺にもどのような理由がございましたのでしょうか。 助動詞のまとめ セットでまとめる助動詞の意味の違い 接続でまとめる助動詞 接続で区別する助動詞 20 接した過去の回想 経験過去 ・・・間に知った過去の回想(伝聞過去) 未来推量(だろう) らむ らる・す・さす・しむ・む・む ずまし・ず・・まほし (今ごろは・・・ているだろう) けむ・過去・・ただろう) →べし。 「ラ変型連体形 (・・・・・つ・ぬたり・けむ・たし らむ・めり・らし・ベレ・ まじなり(伝聞推定) 強調しまじ 連体形なり(新定)・たり(新定)ごとし 連体形体言 いらし的事実に基づく推量 未然形四段已然形・・・り ④連用形 +なり→断定 めり・・・覚的に基づく推 上下の接続 なり・・・覚に基づく推量 の正体がわかる 直前の活用 動詞→後の接続 文中の活 未然形 +ぬ→打消 「ず」 連体形 連用形 ぬ→完了 「ぬ」終止形 (未然形 +→打消 「ず」 已然形 運用 +ね→完了「ぬ」命令形 終止形(ラ変型連体形)+なり→伝聞・推定 +に→完了 「ぬ」連用形 連体形体に→断定 「なり」 適用形 ⑤四段変ラ未然形+る・れ→自発・可能 (a) サ未然形四段已然形+る・れ→完了・存続 受身・尊敬 "L+H() 心にきたらば、安心迷乱すと知りて、一事をもなすべからず。直 ちに万事を放下して道にむかふ時、さはりなく、所作なくて、心身な がくしづかなり。 (注)1 そのままの状態にとどまっていることなく 2 平生の人生はいつまでも不変なものであり、いつも平安に生 活していけるという考え 3 死門にのぞむ時・・・死を目前にした時 5 幻の生… 幻のようにはかない人間の一生 6 妄想った考え 7 心乱す…誤った考えが心を迷わせ乱す 8 下関係を断って 心身をすること 怠慢 9 com F 四 古典文法 200 P.62 200 P.102 学習日 税 悪 形

回答募集中 回答数: 0
理科 中学生

この問題の(1)と(2)が答えを見ても分かりません。電気の問題です 誰か教えてください!

p.83で復習 ■p. 80で復習 キャレンジ問題 の実験を行った。 あとの問いに答えなさい。 (千葉) 実験 1 図1 図2のように, 6.0Vの電圧を加えると1.5Aの電流 が流れる電熱線Aと, 発生する熱量が電熱線Aのである電熱線B ちょくれつかいろ へいれつかいろ に加わる電圧の大きさを測定した。 その後, 電圧計をつなぎかえ, 加える電圧を6.0Vにし, 回路に流れる電流の大きさと, 電熱線A を用いて, 直列回路と並列回路をつくった。 それぞれの回路全体に 電熱線Bに加わる電圧の大きさをそれぞれ測定した。 図1 図2 p. 80で復習 6.0 1.5k A 復習 A V 電熱線 A 電熱線 B 電熱線 A 電熱線 B A 6.0 V 6.0 V あたい 実験2 図2の回路の電熱線Bを,抵抗(電気抵抗)の値がわからない 電熱線Cにかえた。その回路全体に加える電圧を5.0Vにし,回路 に流れる電流の大きさと,それぞれの電熱線に加わる電圧の大きさ を測定すると,電流の大きさは, 1.5Aであった。 (1)実験1で,消費電力が最大となる電熱線はどれか。 また、消費電 力が最小となる電熱線はどれか。 次のア~エのうちからそれぞれ1 つずつ選び,記号を答えなさい。 チャレンジ問題 最大 (1) ア図1の回路の電熱線A イ図1の回路の電熱線B 最小 ウ 図2の回路の電熱線A エ図2の回路の電熱線B (2) (2)実験2で,電熱線Cの抵抗 (電気抵抗)の値は何Ωか。

回答募集中 回答数: 0
物理 高校生

(1)では遠心力を考慮していないですが、遠心力を考慮する時は[遠心力を考慮し]と記載されますか? また、⑵のつり合いの式の両辺にmがついてますが打ち消さなくていいんですか?

<問8-4 角速度で回転する円板に、支柱を取りつける。 質量mのおもりに糸をつけ 柱の頂点に結びつけたところ, 支柱と糸は角度をなして静止した。おもりと回転 の中心の距離をとし、以下の問いに答えよ。 ただし重力加速度の大きさを とする。 (1) 糸の張力の大きさを,m,g,eを使って表せ。 (2) 遠心力を考慮し, 物体にはたらく水平方向の力のつり合いの式を立てよ。 (3) おもりの円運動の運動方程式を立てよ。 さて,遠心力の考えかたを身につけるべく問題を解いていきましょう。 (2),(3)が大事な問題ですから,しっかり理解してくださいね。 <解きかた (1) mg.8で表すので,鉛直方向に注目しましょう。 糸の張力の大きさをSとおくとおもりにはたらく鉛直方向の力のつり 合いより Scos0=mg S= mg cose (2) 「遠心力を考慮し」とあるので、 おもりに観測者を乗せて考えます。 観測者は円運動することになるので, 回転の中心に向かって加速度 a=rw2で運動しているということです。 観測者からすると, おもりには慣性力ma=mrw²が回転の外向きにはた らいて見えます。 また、おもりには糸の張力がはたらくので、力のつり合いより Ssin0=mrw2 (1)の結果より Ssin0=mg sin0 Emgtane cose よってmgtand=mrw答 (3) おもりにはたらく向心力はSsin0で、角速度 w半径1の円運動をするので Ssin0=mr2 mgtan0= mrw2 ・・・答 (2)と(3)を比べると同じ式になりましたね。 遠心力は円運動の慣性力です。 しっくりこない人はChapter7 を復習して、理解を深めておきましょう。 問8-4 円板が m 回るんだね 8 08 W → (1)鉛直方向の力のつり合いを考えて Scoso=mg S= mg COS Omr Ssin 0 20 mrw おもりの上に観測者を乗せて 考えると,F=mrw の遠心力 を上図のように受けるので 力のつり合いより Ssin0=mrw2 W mg cos0 mgtan 6=mrw どちらも結果の式は 同じだが,考えかたが 違うんじゃ (3) 0 Scos 0 Img S sin a=rw² おもりは回転の中心に向心力 Ssin を受ける。 円運動の 運動方程式より Ssin=mrw² wwww ww ma F mg tan 0=mrw² (合 ここまでやったら 別冊 P. 40~

回答募集中 回答数: 0