学年

質問の種類

数学 高校生

数IIの軌跡の問題です 問題97、98にある棒線部分の「円1、2上にある」とは どうして分かるのでしょうか?

例 98 点に連動する点の軌跡 ①のののの x+y=9上を動くとき,点A(1,2)とQを結ぶ線分AQを2:1 に内分する点Pの軌跡を求めよ。 CHARTL & SOLUTION 連動して動く点の軌跡 つなぎの文字を消去して、 p.158 基本事項 1 161 xだけの関係式を導く 0 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件をs, を用いた式で表し, P,Qの関係から, s, tをそれぞれx, yで表す。これをQの条件式に 代入して,s, tを消去する。 Q(s, t), P(x, y) とする。 Qは円 x2+y2=9 上の点であるから Pは線分AQ を 2:1 に内分する点であるから 1・1+2s1+2s 3 13 3 軌跡と方程式 s'+t2=9. ① (s, t), 11. A 1・2+2t_2+2 (1,2) 2+1 3 y= 2+1 3 -37 3x-1 よって s=- t= 2' 3y-2 2 こんに内分 これに代入すると(1)+(32) - 9 =9 ゆえに w+ li with 5h3. =4 ② したがって, 点Pは円 ②上にある。 逆に,円 ②上の任意の点は、条件を満たす。 以上から, 求める軌跡は 中心 (1/3/2/3) 半径20円 3' P(x,y) 3 つなぎの文字s, tを消 去。 これにより、 P の条 tug(xの方程式)が得 int 上の図から,点Qが [円x2+y2=9上のどの位 置にあっても線分AQは 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない。 POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) =0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。

解決済み 回答数: 1
数学 高校生

基本例題の方では、互いに素でない⇔素数を公約数にもつ、と書かれてあるのですが、Exercisesの方の問題では、公約数gが素数と書かれてありません。なぜなのか教えて欲しいです🙏

530 |基本例題 121 互いに素に関する証明問題 (2) 000 自然数 α, bに対して, aとbが互いに素ならば, a + b と abは互いに素である。 ことを証明せよ。 p.525 基本事項 2 重要 121 a+b abの最大公約数が1となることを直接示そうとしても見通しが立たない。 そこで,背理法(間接証明法)を利用する。 →a+b と ab が互いに素でない, すなわち, a+bとαbはある素数」を公約数 にもつ,と仮定して矛盾を導く。 なお、次の素数の性質も利用する。 ただし,m, n は整数である。 mn が素数 』 の倍数であるとき,またはnはかの倍数である。 1 最大公約数が1を導く CHART 互いに素であることの証明 背理法 (間接証明法)の利用 a+b と ab が互いに素でない, すなわち, a + b と αbは 解答ある素数を公約数にもつと仮定すると とnが互いに素で ない a+b=pk D, ab=pl ② と表される。 ただし, k, lは自然数である。 ...... mnが素数を 公約数にもつ ② から, α または は の倍数である。 α a=pmとなる自然数がある。 の倍数であるとき, = 1 このとき,①から,b=pk-a=pk-pm=p(k-m) となk-mは整数。 りもの倍数である。 (I+\)8=8+18=8+ (I+s)=( これはaとbが互いに素であることに矛盾している。(+0) Ict bがpの倍数であるときも,同様にしてαはの倍数であa=pk-b り,aとbが互いに素であることに矛盾する。 =pk-m') したがって, a+bとabは互いに素である。)=+ ( ' は整数) 参考 前ページの基本例題120 (2) の結果 「連続する2つの自然数は互いに素である」は,整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 問題 素数は無限個存在することを証明せよ。 [証明] 2以上の自然数とする。 +1は互いに素であるから, n=n (n+1) は異な る素因数を2個以上もつ。 同様にして, n=n(n+1)=ni(n+1) (n2+1) は異なる素因数を3個以上もつ。 「この操作は無限に続けることができるから,素数は無限個存在する 素数が無限個存在す

解決済み 回答数: 1