学年

質問の種類

数学 高校生

どうして、方程式が実数解を持つようなkの値を求めるために、複素数の相等という解法を用いるのですか?

68 2 重要 例題 43 虚数を係数とする2次方程式 000 の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように の値を定めよ。 また、 その実数解を求めよ。 CHART 解答 SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る。 MOITULO 実物 D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1+i)ω2+(k+i)a+3+3ki = 0 基本 この左辺を a+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, 6=0 ←α, kの連立方程式が得られる。 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i=0 α,kは実数であるから, a2+ka+3,a2+α+3k も実数。 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって a2+ka+3=0 ...... ① α2+α+3k=0 ...... ② ①② から ゆえに よって k=1 または α=3 [1] k=1 のとき ! なぜ (S-)&+n)e=1-e-s x=α EXERCISES A 33 次の2 を代入する。 ◆a+bi = 0 の形に整 (1) 2 (3) 342 次の (1) (3) 35③ (1) ■この断り書きは重B 363 ◆ 複素数の相等。 ◆ α2 を消去。 infk を消去すると α-22-9=0 が得られ 1037 ①,② はともに2+α+3=0 となる。 因数定理 (p.83 基本事項 を利用すれば解くこと きる。 c1 0>(S- これを満たす実数 αは存在しないから,不適。 ◆D=12-4・1・3=-11 03 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 >0 ①:32+3k+3=0 103 ②:32+3+3k=0 [1], [2] から, 求めるんの値は 実数解は k=-4 0> x=3 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のはa,b,c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0の解 ■はx=0, iであり,異なる2つの実数解をもたない (p.81 補足参照)。 H

未解決 回答数: 1
数学 高校生

sin x /x→1の証明について 円を用いた面積比較からのはさみうちを使って証明する方法(一枚目)が有名ですが、微分係数の定義に当てはめる(二枚目)のはダメなんでしょうか? sin xのグラフの原点の傾きという意味なのですごく単純です

[証明] とし,∠ABC = 0 とする.この B 3 のグラ CD lim- 8-082 表しています。 とを を求めよ. かり記憶しておきましょう。 この大小関係は、よく利用されるものなのでしっ y=sin.x 12 0 三角関数に関する極限のうち、最も重要であるのは次の極限です . この定理を用いて, lim sin.x lim 110 I sin.x 1-0 I =1であることを示しましょう. [証明 ] x→0 とするから, 0<|x|<1としてよい。 この公式を証明するための準備として、次の定理の成立を示しておきましょう。 0<x< 10 において, sin.z<x<tanzi sinr<r<tanr の各辺を sin.x(0) で割って, 1<x 1 sinx COS.X ∴. 1> sinx > COS I I 図のように, 半径1の単位円周上に∠AOB=x (x は弧度法の角) となるように2点A, B をとる. lim cos.x=1であるから, はさみうちの原理により +0 このとき面積について, 点Aにおける円の接線と半直線 OB との交点をT とする. B. sinx lim =1 ......① 次に, 2 IC x+0 t< <<0のとき、x=-t とおくと << であるから,①より、 sinx sin(-t) sint IC lim lim- lim- =1 0115 x t+0 -t t+0 t △OAB <扇形 OAB < △OAT が成り立つ. それぞれの面積をx を用いて表すと ①.②より. 1 2 sinr<<tanr 1 2 0-(-x+x) mil lim sinx TC x0 =1 なる.したがって, 0<x<2/27において、 no inil が成り立つ. sinr<r<tang 薫り立つ. (証明終わり) この極限公式は,xが十分に小さい (0に近い)とき, sinx≒x であることを表しています.

解決済み 回答数: 2