学年

質問の種類

数学 高校生

赤線を引いた部分、 軌跡の方程式に値を好きなように追加しても取る軌跡のグラフは変わらないのはどうしてですか?

どの 79. ると 基本例題 42円の接線のベクトル方程式 ((1) 中心C(c), 半径rの円C上の点P (po) における円の接線のベクトル方程 式は(po-cp-c) = であることを示せ。 (2) 円x2+ye=re (r>0) 上の点 (xo,yo) における接線の方程式は xo.x+yoy=ra であることを, ベクトルを用いて証明せよ。 (1) 円 C の接線ℓ は、 接点Pを通り, 半径 CP に垂直 すなわち, CP は接線の法線ベクトルである。 このことから直線のベクトル方 程式を求め、与えられた形に式を変形する。 (2) 中心が原点O(0), 半径が の円上の点P() における接線のベクトル方程式は、 r (1) において=0 とおくと得られる。 それを成分で表す。 【CHART 円の接線 半径 接線 に注目 月 (1) 中心 C, 半径rの円の接線 上に点P(D) があることは, CPPPまたはPP=0が 成り立つことと同値である。 よって,接線のベクトル方程 式は CP-(b-Do)=0 CP=po-c であるから (Po-C) •{(p—c) — (p—c)}=0 したがって Po-c)-p-c)-po-c²²=0 Po(Po) pop=xox+yoy これを②に代入して, 接線の方程式は xox+yoy=x2 PO C(C) ID=CP2=2であるから (Po-c).(p-c)=r² (2) 中心が原点O(0), 半径rの円上の点P(Do) における 接線のベクトル方程式は、 ① において, c=0とおくと 得られるから Dop=r2 Do = (xo,yo), D= (x,y) とおくと 基本 35 (xo-a)(x-a)+(y₁−b)(y—b)=r² であることを, ベクトルを用いて証明せよ。 点A(7) を通り, ベクト ルに垂直な直線のベ クトル方程式は n·(p-a)=0 晶検討 (1) PCP=8 =CP CP 427 (0°≦<90°) とおくと (2)・(お一 ⑦42 練習円(x-a)^2+(y-b)=²(x>0) 上の点 (xo,yo) における接線の方程式は =CPxCP cost =rXy=" (FP, i CP であるから) \CP cost=CPo=r 1 章 ⑤ ベクトル方程式

未解決 回答数: 1
数学 高校生

(3)の(解1)はなぜ連立して解いているのですか?

ty=1のx>0,y>0 の部分を C で表す. 曲線C上に点 P(x,y) をとり, 点Pでの接線と2直線y=1, および, x=2との交点 をそれぞれ, Q, R とする. 点 (2, 1) をAとし, AQRの面積をSとお く.このとき、次の問いに答えよ. (1)+2=k とおくとき, 積141 をkを用いて表せ。 (2) Skを用いて表せ。 (3) 点PがC上を動くとき, Sの最大値を求めよ. (1) 点Pはだ円上にあるので, i' +4y²=4 (x>0,y>0) をみた しています。 (2) AQRは直角三角形です. (3) kのとりうる値の範囲の求め方がポイントになります。 解答は2つありま すが、1つは演習問題1がヒントになっています。 解答 mi'+4y²=4 PATUS = (x₁+2y₁)²—4x₁y₁=4 k²-4 4 (2) P(m1, yi) における接線の方程式は +4yy=4 (4-4², 1). R(2, 4-20¹) (1) .. miy=- よって, AQ=2-- 4-4y1_2.c+4y-4 AR=1-- UPLONBUCEt yk S=1/12 AQAR = 1 O Q P I1 X1 4-21_2.m+40-4+2%-2の方向 2y1 Ays _(+2yı-2)2_2(k-2)2円 = 2x₁41 k²-4 (土) x=2 Ay=1 JR 2 x 2(K-2) k+2 (3) (解Ⅰ) (演習問題1の感覚で・・・) [mi'+4y²=4......① より, y を消去して [+2y=k ......2 π 4 判別式≧0 だから, x₁²+(k-x₁)²=4 =2- 2²2-2k+k2-4=0 k²-2(k²-4)≥0 k²-8≤0 : -2√2 ≤k≤2√2 k また、右図より 118 演習問題 2 8 k+2 ポイント よって, 2<k≤2√2 んが最大のときSは最大だから, Sの最大値は6-4√2 =2cose (解ⅡI) *₁²+y₁²=1 ky (0<<) とおける. TC 3π y = sin0 .. k=x+2y₁=2(sin0+ cos 0) = 2√2 sin(0+7) だ円 2<k Y/A .. 2<k≤2√2 が最大のときSは最大だから, Sの最大値は6-4√2 だから // <sin (6+4) 1 a² + = 1 上の点は 62= x=acose,y=bsin0 とおける だ円 +²=1と直線y=-1/2x+k(k:定数)は,異なる x² 点P, Qで交わっている. このとき, 次の問いに答えよ. (1) 定数んのとりうる値の範囲を求めよ. (2) 線分PQの中点Mの軌跡の方程式を求めよ.

未解決 回答数: 1
数学 高校生

これ赤線部分って青チャートでは省略されてて、 どういう要領で書くものなんですかね

証 109 定点からの距離の比が一定な点の軌跡 2点A(-4, 0, B2, 0) からの距離の比が2:1である点の軌跡を求めよ。 p.174 基本事項 ■ 2 指針 例題 定点A(-4, 0), B(2,0 ) 条件を満たす任意の点を P(x,y) とすると、条件は このままでは扱いにくいから, a>0,6>0のとき,a=b⇔a=b² の関係を用いて AP:BP=2:1 AP:BP=2:1⇔AP=2BP⇔AP'=4BP として扱う。 これを x, の式で表すと, 軌跡が得られる。 軌跡である図形 F が求められたら, 図形F上の任意の点Pは,条件を満たすことを確 認する。 CHART 条件を満たす点をP(x, y) とする AP: BP=2:1 AP=2BP AP2=4BP2 よって すなわち したがって 軌跡 軌跡上の動点 (x,y) の関係式を導く (x+4)²+y²=4{(x−2)²+y²} x2+y²-8x=0 整理して ゆえに すなわち x2-8x+42+y2=42 (x-4)2+y2=42, y4 2 B 2 P(x,y) 18 x 175 <AP > 0, BP > 0 である から平方しても同値。 よって, 条件を満たす点は,円 ①上にある。 逆に、円①上の任意の点は,条件を満たす。 したがって、求める軌跡は A 中心が点 (4,0), 半径が40円・ 注意 「軌跡の方程式を求めよ」 なら, 答えは ① のままでよ いが、 「軌跡を求めよ」 なので、 Aのように、答えに図 形の形を示す。 2 3章 <x,yの式で表す。 AP2={x-(-4)}+(y-0)² BP2=(x-2)+(y-0) 2 1989軌跡と方程式 ①の式を導くまでの式 変形は,同値変形。 円(x-4)2+y²=4を答 えとしてもよい。 アポロニウスの円 上の例題の軌跡の円は, 線分ABを2:1に内分する点(0, 0), 外分する点 (8, 0) を の両端とする円である。 の距離の比が min(m>0,n>0, m≠n) である点の軌 である。こ

回答募集中 回答数: 0