学年

質問の種類

数学 高校生

赤い()のところで、なぜ-∞になるんですか?

32 基本 例題 198 方程式の実数解の個数 f(x)=(定数)に変形 00000 αは定数とする。 方程式 ax=210gx +log3 の実数解の個数について調べよ。 logx. ただし, lim =0を用いてもよい。 p.326 基本事項 ② 重要 197 重要 199 x 第8 JA 指 指針▷ 直線 y=ax と y = 2logx+log3 のグラフの共有点の個数を調べれ ばよいわけであるが,特に, 文字係数 αを含むときは,αを分離し f(x) =αの形に変形して考えるとよい。 このように考えると,y=f(x) [固定した曲線] とy=a[x軸に 平行に動く直線] の共有点の個数を調べる ( ) ことになる。 y=f(x) [CHART 実数解の個数グラフの共有点の個数 定数αの入った方程式 定数 αを分離する 解答 真数条件より,x>0であるから,与えられた方程式は この断りを忘れずに。 2logx+log3 2logx+log 3 =αと同値。 f(x)= とすると 定数αを分離。 XC x ƒ'(x)= 2−(2logx+log 3) _ 2−(logx²+log 3) x² f'(x) = 0 とすると,x>0であ e るから x= √3 x>0における増減表は右のよ うになる。 また limf(x)=-∞, limf(x)=0 XC + 2-log 3x² 110g3x2=2から x2 3x2=2 e x 0 f'(x) f(x) 7 2√3 e x+0 x→∞ y=f(x) のグラフは右図のように なり,実数解の個数はグラフと YA 2√3 e x>0であるから /3 0 極大 x→ +0のとき 10 x →∞, logx→-8 x→∞のとき e x= 2√3 直線y=aの共有点の個数に一致 するから <αのとき0個; e 0 x e y=a 2√3 |y=f(x) a≤0, a= のとき1個; e 2√3 0<a< のとき2個 e logx →0. 0 x x [参考] ロピタルの定理から lim 8 logx x =lim

解決済み 回答数: 2
数学 高校生

☆高校数学IIです☆ 微分の問題なのですがグラフまで書けたのですが範囲が納得できません!! (2)なのですが、負の解ひとつと正の解2つと問題に書いてあるので私は0以上m以上5と思ったのですが違いました。 答えは-27<m<0になります!!

微分法 例題 210 実数解の個数(1) **** 3次方程式 -3x²-9x-m=0 m は実数の定数)について 次の問い に答えよ. (1)異なる3つの実数解をもつとき, mの値の範囲を求めよ。 (2)1つの負の解と異なる2つの正の解をもつとき、mの値の範囲を求 [考え方] 与えられた方程式を、 m=x-3-9x のように定数を分離して ①(笑)g= 直線 y=mと曲線 y=x3x9x の wwwwwwwwwww 位置関係を調べる。 解答 ly=x-3x²-9x 定数を分離する wwwwww 実数解の個数は、直線と曲線の共有点の 個数と同じであることを利用する. (1)3-9x-m=0 を変形して.m=x-3-9x [y=m ......① 1y=x-3x²-9x … ② とおく. 与えられた方程式の異なる実数解の個数は ①と② のグラフの共有点の個数と一致する. ②より、y'=3x²-6x-9=3(x+1)(x-3) y'=0 とすると, x=-1,3 の増減表は次のようになる。 -I I 3 y + 0 - 0 + 極大 極小 y 7 5 -27 ②のグラフは右の図のようになる。 よって、グラフより 異なる3つの実数解を もつmの値の範囲は, -27<m<5 (2)直線 y=mと曲線 y=x3x9x が小を x<0で共有点を1個, 0x で共有点を2個も つようなmの値の範囲を求めると、 グラフより、 -27<m<0 -55 2個 0 3個 -27 2個 1個 ocus 方程式 f(x)=a 曲線 y=f(x) の実数解の個数 [直線 y=a の共有点の個数 (文字定数は分離せよ) > 方程式 f(x)=αの実数解は、曲線 y=f(x)と直線y=aの共有点のx座標である。 3次方程式+5x+3x+α=0 の実数解の個数は、定数αの値によってどの ように変わるか調べよ AR p.410回国 最大

解決済み 回答数: 1
数学 高校生

微分に着いてです。総合問題30の方で質問があるのですが、類題では(画像3枚目)x=0になる場合も考えているのにこの問題では考えていないのはなぜですか...?教えて頂きたいです。

用いて表す。 総合 実数a, b に対し, 関数f(x)=x^+2ax3+(a2+1)x2-a3+α+bがただ1つの極値をもち, その 30 極値が0以上になるとき, a, b の満たす条件を求めよ。 f'(x)=4x3+6ax2+2(a2+1)x=2x(2x2+3ax+a2+1) [類 横浜国大] 本冊 数学Ⅱ 例題 218 まず、微分する。 f'(x) =0 とすると x=0, 2x2+3ax+a2+1=0 xの2次方程式 2x2+3ax+a2+1=0 ...... ①の判別式をDと ←① の実数解の個数が するとD=(3a)2-4・2・(a+1)=α²-8=(a+2√2) (α-2√2) X [1] D>0 すなわち a< 2√22√2 <a のとき カギとなる。それはD の符号によって変わって くるから,D>0,D=0, α+1>0より,x=0は①の解ではないから,①はx=0以D<0 に分ける。 外の異なる2つの実数解をもつ。 ゆえに、f'(x) = 0 は異なる3つの実数解をもつ。 この3つの解をα, B, y (a<B<y) とすると, f (x) の増減 x 表は次のようになる。 10 a B r ... ←本冊 p.347 の 参考 参 0 +0 0 + 照。 極大 \ 極小 > f'(x) f(x) 極小 よって, f(x) は極値を3つもつから、不適。 ◯[2] D0 すなわち a=±2√2 のとき ①は重解 x=- 2-2 3 3a == -α をもち 2x2+3ax+a2+1≧0 4 3 ←等号はx=- aのと き成り立つ。 (i) a=2√2のとき 3√√2 f'(x) = 0 は x=0, を解にもつから, 3√√2 XC 0 2 -2 f(x) の増減表は右のようになる。 f'(x) - 20 + 0 + よって, f(x) は x=0で極小となり, 極値0- を1つだけもつから,適する。 f(x) 極小 f √(3√2) (ii) a=2√2のとき f'(x)=0 は x=- 3√√2 2 0を解にもつか 3√√2 XC 0 ら,f(x) の増減表は右のようになる。 2 値を1つだけもつから,適する。 よって, f(x) は x=0で極小となり,極 f'(x) - 0 f(x) (3√2 2 20 ▼ 極小 > : +

解決済み 回答数: 1