学年

質問の種類

英語 高校生

上から5行目の And~easily. の文構造を教えて頂きたいです。justが形容詞でSVCではないのでしょうか?usの位置とthat節のはたらきが分からないです… また、下から2行目のrightの訳がよく分かりません。in the scientific literatu... 続きを読む

S V <なぜ> ~するために 名の~倍形だ。 倍数の表し方 ~times as 形 as ⑧ Fear takes an exposure time (of 250 mill seconds) (to recognize 125 times as long as a smile), makes absolutely no sense, evolutionarily speaking", Martinez says. 66 " which 以上 ☆2分のことを対比して表現するときに用いる whileは2つの意味を持つ!①~の間、②~だけれども≒though など Recognizing fear is fundamental to survival, while a smile isn't necessarily so, but that's how we are wired!" Studies have shown that smiling faces are judged as more familiar than neutral ones.> 名詞節をつくる And it's not just us that can recognize smiles more easily. 66 This is true both for humans and for machines" says Martinez. Although scientists have been studying smiles for about 150 years, they are still (at the stage of trying to categorize types) of smile among the millions) (of possible facial expressions). 63 many One of the fundamental questioness in the scientific literature right now is, how expressions do we actually produce)?" facial 疑問詞も名詞節をつくる 66 says Martinez. Nobody knows, a

解決済み 回答数: 2
数学 中学生

この1から4の解けている問題が合っているのか見て欲しいです、、、 あと、4の「りくさんの考え」の説明をしてくださると嬉しいです。(5,6も検討がついていないので、教えてくださると助かります!!)

(Q 連続する整数に 連続する3つの整数の和には、どんな性質があるかを調べて ある整数をnとすると, 連続する整数は次のように表すことが できます。 みましょう。 -1 -1 +1 +1 +1 nを基準にして 考えればいいね。 連続する3つの整数の和を、 1 + 2+ 3 = n-2 n-1 n n+1 n+2 1 右のようにいろいろな整数で 調べて、どんな性質があるかを 予想してみましょう。 9+10+11= 24+25 +26= 自分の 考えをも 2 1で予想した性質が成り立つことを示すには, どうすれば よいでしょうか。 4 連続する3つの整数の和は、3の倍数になります。 この理由を はるかさんとりくさんの考え方でそれぞれ説明してみましょう。 また,それぞれどんなよさがあるかを話し合ってみましょう。 10 連続する3つの整数を, 文字を使って表すことを考えてみましょう。 3 はるかさんとりくさんは, 連続する3つの整数の表し方について 次のように考えました。 下の ] をうめてみましょう。 友だちの 考えを知ろう +1 +1 +1 +1 + 1 + 1 +1 +1 +1 1 2 3 4 4 5 6 7 8 9 10 ...... はるかさん りくさん 21章 式の計算 最も小さい整数を +1 +1 nとすると... 4 5 6. ↑ 真ん中の整数を -1 +1 n とすると... 4 15 6 n 5 10 4で説明したことを読み直すと, 「連続する3つの整数の和は, 3の倍数になる」ことのほかに,次のこともいえます。 下のにあてはまる言葉をうめましょう。 「連続する3つの整数の和は「 の3倍になる」 見方を変えると,ほかの 性質を見つけることが できるね。 18.0 6 10 連続する5つの整数の和に ついて,どんな性質がある でしょうか。 1 + 2 + 3 + 4 + 5 = 7 + 8+ 9 +10 +11= その性質が正しいことを 文字を使って説明してみましょう。 18 +19 +20 + 21 +22= みんなで 話し合おう 深めよう 数学的な考え方 ほかにいえることは ないか考える 真ん中の整数に着目 する。 2節式

解決済み 回答数: 1
数学 高校生

(3)についてです。 なぜa=の式ではなくb=の式を代入するのでしょうか 逆ではダメなのですか?

は0でない とろがともに3の倍数ならば,7a4bも3の倍数であることを証明せよ。 ひと 40 がともに整数であるようなαをすべて求めよ。 a もの倍数で,かつがαの倍数であるとき, aを6で表せ。 aがろ 「αがもの倍数である」ことは, 「bがαの約数である」 ことと同じであり,このとき, 整数を用いて a=bk と表される。このことを利用して解いていく。 (2)αは5の倍数で,かつ40の約数でもある。 ( a, b が3の倍数であるから, 整数k, lを用いて) よって a=3k, b=31と表される 7a-46=7・3k-4・3l=3(7k-4l) 7k-41 は整数であるから,7a-46 は3の倍数である。 A (2) ゆえに,kを整数としてα=5k と表される。 -が整数であるから,αは5の倍数である。 40_40_81001) って 5kk a P.516 基本事項 ■ b は αの約数 a=bk Labの倍数 1年 整数の和差積は整数 である。 <a=5k を代入。 (C) a が整数となるのは, kが8の約数のときであるから k=±1, ±2, ±4, ± 8 したがって a=±5, ±10, 20, ±40 αがbの倍数, bがαの倍数であるから, 整数k, lを 用いて a=bk,b=al a=bk を b=al に代入し,変形すると b = 0 であるから kl=1 とされる。 b(kl-1)=0 負の約数も考える。 <a=5kにkの値を代入。 αを消去する。 k, lはともに1の約数で ある。 4 章 18 約数と倍数 最大公約数と最 k, lは整数であるから k=l=±1 したがって a=±b 倍数の表し方に注意! 上の そば (1) で a=3k, b=3kのように書いてはダメ! あは別々の

未解決 回答数: 1
情報:IT 高校生

マーカー引いたところが分かりません。 まず浮動小数点数とは何か全く知らないので丁寧に教えて下さると嬉しいです。

類題 : 6 例題 6 実数の表現 2 10 進数の 6.75 を,16 ビットの2進数の浮動小数点数(符号部1ビット,指数部5ビット,仮数部 10 ビッ ト)で表すことを考える。 次の文章の空欄に適当な数字を入れよ。OTO (C) 3 2進数の桁の重みは以下のようになる。 ( 整数部 小数点 小数部 8 4 2 1 1/2 1/4 1/8 1/16 よって6.75 は, 6.75=4+2+0.5+ ( ① )のように桁の重みに分解できるので, 6.75 (10)=110.11(g) と2 進数へ変換できる。 次に, 110.11(2) = +1.1011×22となるので, 符号部は(②), 仮数部は(③)となる。 指数部は 2+15=17から( 4 ) となる。 以上より, 求める浮動小数点数は,(⑤)である。 解答 0.25 (2) ③ ④ 10001 1011000000 158921 ⑤ 0 10001 1011000000 (2) ベストフィット n 進数の桁の重みは,次のように求められる。 整数部 小数点 小数部 n³ n² n¹ n° -2 -3 -4 n n n n 解説 指数部は一番小さな指数が0となるように数値を加えて調整する。この例題の場合、指数部は5ビットなので15を加える 例題 7 文字のデジタル化 類題 : 7 2進数00000001001000110100010101100111 2進数 16進数 0 1 右の文字コード表(一部) において,次の問いに答えよ。 0000 2 0 NUL DLE (空白) 3 4 [0001] 1 (1) 「E」に対応する文字コードを16進数で表せ。 SCH DC1 ! 0010 2 STX DC2 |0011| 3 FTX 0120 © A B abc 15 P Q R S 10 7 6 p a r S

未解決 回答数: 1
数学 高校生

写真の質問に答えてください!

XENO がんの倍数で,かつがの倍数であるとき, a をbで表せ。 40 がともに整数であるようなαをすべて求めよ。 0000 でない整数とする。 aとbがともに3の倍数ならば, 7a4bも3の倍数であることを証明せよ。 P.516 基本事項 ひと a αが6の倍数である」ことは, 「bがαの約数である」 ことと同じであり,このとき,整数kを用いて a=bk と表される。このことを利用して解いていく。 aは5の倍数で,かつ 40の約数でもある。 (2) a=3k, b=31 (0) α, bが3の倍数であるから, 整数k, lを用いて と表される。 7a-46=7.3k-4・31=3(7k-4L) よって 7-4は整数であるから, 7a-46は3の倍数である。 が整数であるから, αは5の倍数である。 (2) ゆえに,kを整数として α=5kと表される。 40 408 F001 a 5k k a = 4 整数となるのは, hが8の約数のときであるから k = ±1, ±2, ±4, ±8 a=±5, ±10, ±20, ±40 用いて a=bk, b=al a=bk をb=al に代入し、変形すると b=0であるから kl=1 k, lは整数であるから したがって a=bk Laは6の倍数 したがって (3) αが6の倍数, bがαの倍数であるから, 整数k, lを と表される。 ■ 倍数の表し方に注意! 200)+(1 k=l=±1 bα 約数 a b(kl-1)=0 整数の和差積は整数 である。 a=5k を代入。 負の約数も考える。 5kにkの値を代入 <a を消去する。 k,lはともに1の約書 AHO ある。 _a=±b なんで、6キロであることが 分かるのですか? を用いずに 例えば (1) でa=3k,b=3kのように書いてはダメ の値を

解決済み 回答数: 1