学年

質問の種類

数学 高校生

それぞれ赤線が引いている部分が1となっている理由が分かりません。途中式を教えて下さい🙏

--=(2√3-3)*- 4 √(2 (2√3-3)-1) 出ない [2]回目の試行終了時に、8のカードが偶数回 出ていて、(+1)回目の試行で8のカードが 出る [1]の確率は 1 1 [2] は互いに排反であるから Px+1=Pn+ 行った後にできる正方 て (n+1)回行った の長さをαで表す。 [2]の確率は こできる正方形の 3 1 すなわち 8 にできる正方形 + 1) 回行った後 であるから 確率は,その試行で8のカードを取り出す確率 P₁ = 1 (2) 試行を1回行うとき, 8のカードが奇数回出る √5 3a -a 8 =22pot/1/2 を変形すると 3 1 Pn+1 = Pn 2 4 2 したがって、数列{p-12 は公比 2013 の等比数 1 1 1 3 列で,初項は P1 = 2 8 2 の等比数列 1 ゆえに Pn - 2 84 3/3\n-1 偶数に である。 "回投げたときのPの座標が奇数で, (n+1) 回目にBが起こる (2) ”回投げたときのPの座標が偶数で, (n+1)回目にAが起こる (1-an) [1] の確率は [2] の確率は an 1 2 [1], [2] は互いに排反であるから すなわち an+1 an+1 = (1-an). 2 an+1= 2 3 + an⋅ 2 1 3 ・an 11/1/30gを変形すると an an+1 2 ----- an したがって, 数列{a. - 12 は公比 -1 の等比 1 1 数列で,初項は a1 3 2 2 n-1 ゆえに == a n よって an 両辺を3"+1で割 よって、数列 等差数列であ すなわち したがって (3)+2+a a+2 公 数 等比数列 したがっ 3(-2)-1 a=a すなわ 初項は にも成 よって よってp=/12/11- (12) 881個のさいころを投げて, 5以上の目が出るこ とを A, 4以下の目が出ることをBとする。 2 1 Aが起こる確率は 89 (1) 250万+1+60=0を変形すると an+2-24n+1=3(x+1-24 m) =2(a+1-3a) [別解 ① C

回答募集中 回答数: 0
数学 高校生

(ィ)の解説でan+2=an+1+anができるのが何故か教えて欲しいです!!

210 第7章 数 列 基礎問 135 場合の数と漸化式 6/5 (1)5段の階段があり, 1回に1段または2段 登るとする. このとき, 登り方は何通りある か. ただし, スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1) と同じようにn段の階段を登る方法が an通りあるとする. このとき, (ア) α1, a2 を求めよ. (イ) n≧1 のとき, an+2 を αn+1, an で表せ. ◎(ウ) αg を求めよ. [N 139 211 (イ) 1回の登り方に着目して (n+2) 段の階段を登る方法を考えると次 の2つの場合がある. star ① 最初に1段登って, 残り (n+1)段登る ② 最初に2段登って, 残りn段登る ① ②は排反で (n+1) 段登る方法, n段登る方法はそれぞれ 舎の事象がすまたま、他方の事象 起きまない状態 an+1 通り, an通りあるので、 an+2=an+1+an an+2=an+1+an (ウ)(イ)より, ([+a)o= mi 平 =246+α5=2(astq4)+as 精講 (1) まず, 1段,2段, 2段と登る方法と2段, 1段, 2段と登る 方法は,異なる登り方であることをわかることが基本です. 次に、 1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. そこで、1と2をいくつか使って, 和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります. (2)(イ)これがこの135のメインテーマで, 漸化式の有効な利用例です. 考え 方は,ポイントに書いてあるどちらかになります. この問題では, どちらで も漸化式が作れます. (ウ)漸化式が与えられたとき,一般項を求められることは大切ですが, 漸化 式の使い方の基本は番号を下げることです. as=a+a6 (α6+α5)+a6 参考 m =3a5+2a=3(α+α3) +2a4 =5a4+3a3=5(a3+α2) +3as =8a3+5a2=8(a₂+a1)+5a2 10219 13+84=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領で α5 を求めると, αs=3a2+2a1=3×2+2=8 (通り)となり,(1)の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります. ① まず (n+1) 段登って、最後に1段登る ② まずn段登って、最後に2段登る ポイント 場合の数の問題で漸化式を作るとき,次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 第7章 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段, 2段 3回使う組合せは, 1段, 1段, 1段2段 5回使う組合せは、 1段, 1段, 1段1段, 1段で 演習問題 135 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの それぞれ,入れかえが3通り, 4通り、1通りあるので 3+4+1=8 (通り) (12,2)(2112)(2.2.1) (11.1.1) (2) (ア) 1段登る方法は1つしかないので, a=1 2段登る方法は,1段, 1段と, 2段の2通りあるので, a2=2 色をぬる. 赤が連続してはいけないという条件の下で,ぬり方が an 通りあるとする. (1) α1, 42 を求めよ. (2)n≧1 のとき, an+2 を an+1, an で表せ. (3) αg を求めよ.

回答募集中 回答数: 0
数学 高校生

(1)(2)で同様に確からしいものが違うんですけど、それによって何が変わり、問題を解くのかわからないです。

118 道の確率 右図のような道があり, PからQまで最短経路で すすむことを考える.このとき,次の問いに答えよ. (1) 最短経路である1つの道を選ぶことが同様に確 からしいとして, R を通る確率を求めよ。 P R (2) 各交差点で, 上へ行くか右へ行くかが同様に確からしいとき 精講 Rを通る確率を求めよ. (1) 題意は「仮にPからQまで道が5本あったとしたら,1つの道 を選ぶ確率は1/3」ということです. (2)題意は「ある交差点にきたとき,上または右を選ぶ確率がそれぞれ1/2」と いうことです. A =(BUA 解答 (1) PからQ まで行く最短経路は 4779 4! 3!1! -=4(通り) (4C1 でもよい) また,PからRまで行く最短経路は /→ 3! 31 2!1! -=3(通り) (3C1 でもよい) 211 ×1 RからQまで行く最短経路は1通りだから 104 PからRを通りQまで行く最短経路は 3×1=3(通り) ※通りたい点 いったん区切って 考える 3 よって, 求める確率は 4 (2)(1)より、題意をみたす経路は3本しかないことがわかる. ここで, A, B, C, D を右図のように定める. i) P→A→B→R とすすむ場合, 進路が2つある交差点はPのみ. よって,i)である確率は1/2 B R PCD

回答募集中 回答数: 0
数学 高校生

1/2をかけてる理由が分かりません。

380数学 B 練習 白球が3個, 赤球が3個入った箱がある。 1個のさいころを投げて, 偶数の目が出たら球を3個 ② 62 奇数の目が出たら球を2個取り出す。 取り出した球のうち白球の個数を X とすると,Xは確率 変数である。 Xの確率分布を求めよ。 また, P(0≦x≦2) を求めよ。 Xのとりうる値は X= 0, 1, 2, 3 [類 福島県医大] [1] X = 0 となるのは, 偶数の目が出て赤球3個を取り出すか ←個→赤3の事象と 奇数の目が出て赤球2個を取り出すときである。 寄 赤2の事象は互い 排反 よって、P(X=0)=1/2003+/12/16-12/20/20/1/3)=1 5 40 加法定理 C2 [2] X=1となるのは, 偶数の目が出て白球1個と赤球2個を 取り出すか, 奇数の目が出て白球1個と赤球1個を取り出す ときである。 よって P(X=1)= 1 3C1 3C2 1 3C1 3C1 + 2 6C3 2 6C2 21 = 1 9 3 = + 20 5 40 [3] X = 2 となるのは, 偶数の目が出て白球2個と赤球1個を 取り出すか, 奇数の目が出て白球2個を取り出すときである。 よって P(X=2)=1/2 1 3C2*3C1 1 3C2 + 6C3 2 6C2 1 / 9 13 = + b1d 2\20 40 [4] X = 3 となるのは, 偶数の目が出て白球3個を取り出すと ←球を3個取り出せるの きである。 よって P(X = 3) = 1/1.303 1 3C3 1 1 = · 2 20 40 は、偶数の目のときのみ [1]~[4] から, Xの確率分布は次の表のようになる。 また X 0 1 2 3 計 5 21 13 1 ① P 1 40 40 40 40 1 39 (*) 40 40 P(0≦x≦2)=1-P(X=3)=1- (*) P(0≦x≦2) =P(X=0)+P(X=1) +P(X=2) として求め てもよいが、余事象の 率を利用する方が計算 らく。

回答募集中 回答数: 0
数学 高校生

高校1年生 数A 確率 なぜ赤い文字で書かれている式になるのかを教えていただきたいです🙏

00000 3個と青玉2個, 袋Bには赤玉7個と青玉3個が入っている には赤玉3 RAから 1個,袋Bから2個の玉を取り出すとき, 玉の色がすべて同じで ある確率を求めよ。 目玉1個を加える。 袋Aから玉を1個取り出し, 色を確認した後, 「もとに戻す。 これを3回繰り返すとき, すべての色の玉が出る確率を求めよ。 ・基本47 玉の色がすべて同じとなる場合は、次の2つの排反事象 に分かれる。 Y (1) 袋A, B からそれぞれ玉を取り出す試行は独立である。 [1] A から赤 1個, B から赤2個 それぞれの確率を求め、加える(確率の加法定理)。 (2) 取り出した玉を毎回袋の中に戻す (復元抽出)から、3回の試行は独立である。 [2] A から青1個, B から青2個 赤,青,白の出方 (順序) に注目して、 排反事象に分ける。 排反, 独立 排反なら 確率を加える 独立なら 確率を掛ける 413 = 袋から玉を取り出す試行と, 袋Bから玉を取り出検討 す試行は独立である。 [1] 袋 A から赤玉1個, 袋Bから赤玉2個を取り出す 3×12=3×265-215 7C2 場合, その確率は 10C2 45 75 [2] 袋 A から青玉1個, 袋Bから青玉2個を取り出す 22-²5 × 45-75 3C2 2, 3 2 場合, その確率は 10C2 [1], [2] は互いに排反であるから、求める確率は 21 2 23 「排反」は事象(イベ 75 75 の結果) に対しての (イベント自体)に 321 ての概念である。 6'6'6 (2) 3回の試行は独立である。 1個玉を取り出すとき、赤であり,「独立」は 玉、青玉, 白玉が出る確率は, それぞれ 3回玉を取り出すとき、赤玉、青玉, 白玉が1個ずつ出る 出方は3P3通りあり, 各場合は互いに排反である。 321 よって 求める確率は 666 X 3P3 6 「排反」と「独立」 の区別 に注意。 事象 A, B は 排反 ⇔A, B は同時に起こ らない(A∩B=x 試行 S, T は 独立 ⇔S, Tは互いの結 影響を及ぼさない (*) 排反事象は 3P 3個あり, 各 率はすべて同じ 321 666 調袋Aには白玉5個と黒玉1個と赤玉1個 袋Bには白玉3個と赤玉2個 いる。このとき次の確率を求めよ。 (1) 袋 A. B から玉をそれぞれ2個ずつ取り出すとき, 取り出した玉が 赤玉1個である確率 Q袋から玉を1個取り出し、色を調べてからもとに戻すことを4 とき、白玉を3回 赤玉を1回取り出す確率

回答募集中 回答数: 0