学年

質問の種類

数学 高校生

なぜ赤で囲まれたところでは、.... <(1/3)^n(3-a1)なのに回答では<=になっているのか? ChatGPTに聞いてみたけどよくわかりませんでした。教えて欲しいです

重要 30 漸化式と極限 (5) ・・・はさみうちの原理 00000 数列 (a) が 03.42=1+1+α (n=1, 2, 3, ......) を満たすとき (1) 03を証明せよ。 ((3) 数列{an) の極限値を求めよ。 指針 (2) 3-** <1/12 (3-2)を証明せよ。 [ 神戸大] p.34 基本事項 基本 21 ① すべての自然数nについての成立を示す数学的帰納法の利用。 (2)(1)の結果、すなわち、3-0であることを利用。 (3) 漸化式変形して、一般項αをの式で表すのは難しい。そこで、(2)で示した 不等式を利用し、はさみうちの原理を使って数列 (3-α)の極限を求める。 はさみうちの原理 すべてのnについて Disastのとき limp = limg =α ならば なお,p.54.55の補足事項も参照。 lima-a 53 CHART 求めにくい極限 不等式利用ではさみうち 2章 数列の極限 解答 (1) 0<an<3 ...... ① とする。 [1] n=1のとき,与えられた条件から①は成り立つ。 [2] n=kのとき,①が成り立つと仮定すると 0<ak <3 nk+1のときを考えると, 0<ak<3であるから ak+1 1+1+ak >2>0 ak+1=1+1+ak <1+√1+3=3 したがって 0<ak+1 <3 < よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ①は成り立つ。 (2)3-αn+1=2√1+an = 3-an 2+√1+an </13- <1/3 (3-4) \n-1 lim (3)(12) から, n≧2のとき no 3 1\n-1 したがって 03-am = (1/3) =(1/2) (301) (3-α1) = 0 であるから lim(3-an)=0 N1X liman=3 n→∞ 数学的帰納法による。 <0<a<3 <<αから√1+ax >1 <3から√1+αk <2 3-a>0であり,an>0 から an> n≧2のとき, (2) から 3-and- an< (3-an-1) (1/2)(3)……… \n-1 (1/2)(3) 3 =2, n=2のとき a2= 2/2 am1-1/2 を満たす数列{an)について すべての自然数nに対してan>1であることを証明せよ。 「類 関西

解決済み 回答数: 1
数学 高校生

38の問題で、なぜ解ⅱのようになるのでしょうか?恒等式がよく分かりません。また37もなぜ恒等式を使うのかよく分かりません。よろしくお願いします

60 60 第3章 図形と 基礎問 61 37 定点を通る直線 直線 (2k+1)-(k-1)y+3k=0はkの値に関係なく定点を 通る。その定点の座標を求めよ、 38 交点を通る直線 2直線x-2y-3=0, 2x+y-1=0 の交点と点 (1,6)を通 る直線の方程式を求めよ. の値に関係なく」 とあったら、 「kについて整理」 して、 恒等式 (Ⅲ)にもちこむのが常道です。 精講 32 によれば, 与えられた2直線の交点を求めれば, 求める直線の通 る2点がわかるので,この方程式が求まります。 ((解I)) 解答 (2k+1)-(k-1)y+3k=0 より(x+y+k(2x-y+3)=0 <kについて整理 しかし,同様のタイプの問題の将来への発展を考えると, ポイント の公式を利用できるようにしておきたいものです。 ((解Ⅱ)) 解答 この式が任意のについて成りたつとき x+y=0 (解I) (通る2点より直線の方程式を求める方法) [x=-1 x-2y-3=0 fx=1 21-y+3-0 Ly=1 恒等式の考え方 り [2x+y-1=0 y=-1 よって, 定点(-1, 1) を通る. よって, 求める直線は2点 (1, -1), ( 1,6) を通る. 38 のポイントについて .. 1+1 +1=-1-6 (x-1) 5 y=−1/2x+1/2 f(x,y) +kg(x,y) = 0 ① が任意のkに対して成りた つとき, {f(x, y)=0 \g(x, y)=0 が成りたつ。 この連立方程式が解 (Io, yo) をもてば,①はf(x,y)=0と g(x, y) =0 の交点すなわち, (Zo, yo) を通る。 (解Ⅱ) (f(x,y)+kg(x,y)=0より求める方法 ) (x-2y-3)+k (2x+y-1)=0は2直線の交点を通る. これが点 (-16) を通るとき, 3k-16=0 k-16 よって, 7x+2y-5=0 ポイント 係数がんの1次式で表されている直 ポイント 第3章

解決済み 回答数: 1
数学 高校生

青チャートです。 このページの練習問題の(1)なんですけど、他の例題や(2)は、結論から変形して条件を使って証明している感じなんですけど、(1)は条件を変形して結論に持っていく解答になってて、これはどういった理由こういうアプローチの仕方の違いなのですか。どこに目をつけたらそ... 続きを読む

解答 (2) a+b+c=ab+bc+ca=3のとき, a, b, cはすべて1であることを証明せ よ。 指針 まず, 結論を式で表すことを考えると、次のようになる。 (1) a,b,c のうち少なくとも1つは1である ⇔ a=1 または 6=1 または c=1 ⇔a-1=0 または 6-1=0 または c-1=0 ⇒ (a-1) (6-1)(c-1)=0 ★ (2) a, b, cはすべて1であるα=1 かつ 6=1 かつc=1 ⇔a-1=0 かつ 6-1=0 かつ c-1=0 (a-1)+(6-1)+(c-1)=0 よって、条件式から,これらの式を導くことを考える。 ②13 (1) (2) 142x CHART 証明の問題 結論から お迎えに行く (1) P=(a-1) (-1) (c-1) とすると P=abc-(ab+bc+ca)+(a+b+c)-1 abc=1とa+b+c=ab+bc+ca を代入すると P=1-(a+b+c)+(a+b+c)-1=0 よって α-1=0 または 6-1=0 または c-1=0 したがって, a, b c のうち少なくとも1つは1である。 (2)Q=(a-1)+(6-1)+(c-1)2 とすると Q=a+b2+c-2(a+b+c) +3 ここで, (a+b+c)=a+b2+c2+2(ab+bc+ca) るから ゆえに よって a+b2+c2=(a+b+c)2-2(ab+bc+ca) =32-2・3=3 Q=3-2・3+3=0 α-1=0 かつ 6-1=0 かつ c-1=0 したがって, a, b, cはすべて1である。 指針 (1) の... の方針 結論から方針を立てる ことは,多くの場面で有 効な考え方である。 |ABC = 0 ⇔A=0 または B=0 またはC= 0 <指針(2)の__★の方針 実数 A に対し A'≧0 [等号はA=0のとき成 り立つ。] これを利用した手法であ る。 A'+B'+C2=0 ⇔A=B=C=0 15 a $16 ◎17 練習 a b c d は実数とする。 ④ 26 1 + + a 1 1 b のとき,a,b,cのうちどれか2つの和は 0 である 1 a+b+c C ことを証明せよ。 (2) a2+b2+c+d=a+b+c+d=4のとき, a=b=c=d=1であることを証明せ よ。 p.49 EX17

解決済み 回答数: 1
数学 高校生

確率の最大値の問題なのですが2つの問題どちらも全くわからないので解説して頂きたいです😭🙏 お願いします🙇‍♀️

11 確率の最大値 きれているのが致した。頑をを取り出すとき、2枚だけが 号で残りの(k-2)枚はすべて異なる番号が書かれている確率をp (k) とする. (1) p(k+1) p(k) (4≦k≦9) を求めよ. つず A ある 福岡教大/一部省略) (2) (k) (4≦k≦10) が最大となるkを求めよ. 確率の最大値は隣どうしを比較 確率 (k) の中で最大の値 (または最大値を与えるk) を求める 問題では、隣どうし[p(k)とか(k+1)] を比較して増加する [p(k) p (k+1)]ようなkの範囲を求 (k) (k+1)の大小を比較すればよいのであるが,p(k)とか(k+1)は似た形をしているの で 力(k+1) p(k) を計算すると約分されて式が簡単になることが多い。 p(k+1) p(k) ≧ 1⇔ p(k) ≤ p (k+1) である. 解答 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30Ck通りあり,これ らは同様に確からしい.このうちで題意を満たすものは 同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方がC2 通り, 異なる番号 の (k-2)枚について番号の選び方がCk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. 10-3-9Ck-2-3-2 よって, p(k)= 30Ck p(k+1) 9Ck-1-3k-1 p(k) 30Ck 10-3 を約分 30Ck+1 9Ck-2-3-2 (k+1)! (29-k)! 30! 9! (k-2)! (11-k)! -.3 ←順に, 30! k! (30-k)! (k-1)! (10-k)! 9! 3(k+1) (11-k) 1 30Ck+1 最後の3は3-1と3-2 を約分. 1 30Ck, 9Ck-1, 9Ck-2 (k-1) (30-k) (2) p(k) sp(k+1) s )= p(k+1) p(k) ≧1⇔ 3(k+1)(11-k -≧1 p(k)>0, p(k+1)>0 (k-1) (30-k) ① は を D ⇔3(k+1)(11-k) ≧ (k-1)(30-k)⇔k(2k+1)≦63 5.(2·5+1)<63<6·(2・6+1) であるから, ①を満たすにはk=4,5で①の等 kは4~9の整数 号は成立しない。 よって p(4)<p(5)<p(6), p(6)>p(7)>p(8) >p (9)>p(10) となり, p(k) が最大となるんは 6. 11 演習題 (解答はp.52) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて, 当たりかはずれか を確認したのち, もとに戻す試行をT とする. 試行Tを当たりくじが3回出るまで繰り 返すとき, ちょうど回目で終わる確率をp (n) とする. (1) 試行Tを5回繰り返したとき, 当たりが2回である確率を求めよ. (2) n≧3として, p(n) を求めよ. (3) p(n)が最大となるnを求めよ. (芝浦工大) n回目が3回目の当たり なので,それまでに当た りは2回(3)は例題と 同じ手法を使う. 44 る 3

未解決 回答数: 1
現代文 高校生

高一 現代の国語 「暇と退屈の論理学」という教材をやっています 「現代」や「現代社会」はどのようなものか。筆者の考えを踏まえて、説明してみる。 説明お願いします!

こくぶんこういちろう 暇と退屈の倫理学 國分功一郎 → 関連教材 「多層性と多様性」(二 六三ページ) 国や社会が豊かになれば、そこに生きる人たちには余裕が生まれる。 その余裕には少な くとも二つの意味がある。 一つ目はもちろん金銭的な余裕だ。人は生きていくのに必要な分を超えた量の金銭を手 に入れる。稼いだ金銭を全て生存のために使いきることはなくなるだろう。 もう一つは時間的な余裕である。社会が富んでいくと、人は生きていくための労働に全 ての時間を割く必要がなくなる。そして、何もしなくてもよい時間、すなわち暇を得る。 では、続いてこんなふうに考えてみよう。富んだ国の人たちはその余裕を何に使ってき たのだろうか。そして何に使っているのだろうか。 「富むまでは願いつつもかなわなかった自分の好きなことをしている。」という答えが 返ってきそうである。確かにそうだ。 金銭的・時間的な余裕がない生活というのは、あら ゆる活動が生存のために行われる、そういった生活のことだろう。生存に役立つ以外のこ とはほとんどできない。ならば、余裕のある生活が送れるようになった人たちは、その余 裕を使って、それまでは願いつつもかなわなかった何か好きなことをしていると、そのよ うに考えるのは当然だ。 ならば今度はこんなふうに問うてみよう。 その「好きなこと」とは何か。やりたくても できなかったこととはいったい何だったのか。今それなりに余裕のある国・社会に生きて いる人たちは、その余裕を使って何をしているのだろうか。 「豊かな社会」、すなわち、余裕のある社会においては、確かにその余裕は余裕を獲得し 人々の「好きなこと」のために使われている。しかし、その「好きなこと」とは、願い つつむかなわなかったことではない。 問題はこうなる。そもそも私たちは、余裕を得たあかつきにかなえたい何かなど持って p いたのか。 少し視野を広げてみよう。 二十世紀の資本主義の特徴の一つは、文化産業とよばれる領域の巨大化にある。 二十世 紀の資本主義は新しい経済活動の領域として文化を発見した。 5 5 かすみ もちろん文化や芸術はそれまでも経済と切り離せないものだった。 芸術家だって霞を *…(の)あかつきに(は) 霞を食う 127 暇と退屈の倫理学 読解編 126

回答募集中 回答数: 0