学年

質問の種類

数学 高校生

赤線のところの式変形がわかりません もう一個わからないところがあってsin60°分のaってどこのことですか?

276 例題 170 正四面体の高さと体積 基本例 000 1辺の長さがαである正四面体 ABCD において, 頂点A から BCD AH を下ろす。 (1) AH の長さんをαを用いて表せ。 (2) 正四面体 ABCD の体積Vをαを用いて表せ。 (3) 点Hから △ABCに下ろした垂線の長さをαを用いて表せ 許 (1) 直線 AH は平面 BCD 上のすべての直線と垂直であるから AHIBH, AHICH, AHIDH ここで, 直角三角形 ABH に注目すると よって まずBH を求める。 AH=√AB2-BH また,BHは正三角形 BCD の外接円の半径であるから, 正弦定理を利用。 (2)(四面体の体積)=1/12 (底面積)×(高さ) HABC, HACD, HABDの体積は等しいことも利用。 (1) AABH, AACH, AADH (3) 3つの四面体 HABC いから、 (四面体 HABC =(正四面 が成り立つ。 求める垂線の長さを (四面体 HABC 1 3 また, (2) より 正 から,これらを よって x= 解答 はいずれも ∠H=90° の直角三 角形であり AB=AC=AD, AH は共通 であるから D である。 直角三角形におい 辺と他の辺がぞ 等しいならば互い 検討 重心の性質を用い 正三角形におい (1)のAH の長さ なお, 重心につ 100B H 三角形の 三角形の △ABH=△ACH=△ADH よって BH=CH=DH C ゆえに、Hは ABCD の外接円の中心であり, BH は H は BCDの 辺 CD の中点 ABCD の外接円の半径であるから, ABCD において、 (数学Aで詳しく であるから a 正弦定理により =2BH-EL sin 60° ABCD は正三角 り、1辺の長さは したがって a a よって BH= √3 a FE △ABHは直角三角形であるから, 2 √3 = の内角は60°である 2sin60° 2 例題 170 A 三平方の定理により h=AH=√AB2-BH?V a a a²- 2 √√6 a /3 3 3 B a H √3 (2) ABCD の面積をSとすると 1 S=asin 60-√3a² 4 よって、正四面体 ABCD の体積Vは 1 √√3 √6 r=/13sh=13 V= a². a= 4 3 12 √2 a であるこ につい また、 (ABCDの面積) BC BCBDsin40 いる( 練習 1辺の ③ 170 にお (1) 17 (3)

回答募集中 回答数: 0
数学 高校生

(1)ではなぜ余りの部分をax²+bx+c にしないのかと、途中の式変形を教えていただきたいです。 (2)ではなぜ3k,3k+1,3k+2と場合分けしているのかを教えていただきたいです。

28 第1章 式と証明 問 9 整式の割り算(3) m, nは正の整数とする。 (1) 3m +1 を 1 で割ったときの余りを求めよ。 (2) +12+x+1で割ったときの余りを求めよ。 これは=0 (n (室蘭工業大) 以上より、 + n=3k(k → 精講 (2) (1)において -1=(x-1)(x2+x+1) より, n=3kのとき は、処理済です. あとは, n=3k+1,3k+2 と場 合分けして調べていきましょう. (1) cam=(x3-1+1)^ = (X+1)" とみて展開 (1) まずは3m を -1で割るこ解法のプロセス とを考えます. n=3k+1 n=3k+2 (2)n=3k, 3k+1, 研究 (2) 3k+2 と場合分けする 解答 (1) x3m+1=(x3)"+1=(x-1+1)"+1 X=x-1 とおいて二項展開すると x3m+1= (X+1)"+1 ={(Xの1次以上の整式)+1}+1 =X(Xの整式)+2 =(-1) (zの整式) +2 よって, x3m+1 を-1で割った余りは 2 (2)(1) より が正の整数のとき これは 二項定理より た余り (X+1)m =mCoX™•10+mCiX~1.14+ この ...+mCmX1" すなわ よい 3k+1=(x-1)(x の整式) +2 である. =(x-1)(x²+x+1)Q(x)+2 (Q(x)はxの整式) n=3k のとき, "+1 を x'+x+1 で割った余りは2である. n=3k+1 のとき,①の両辺にxをかけて, 変形すると 3k+1+x=(x2-x)(x²+x+1)Q(x)+2x 3k+1=(x2-x)(x²+x+1)Q(x)+m ・② 3k+1+1=(x2-x)(x'+x+1)Q(x)+x+1 これはk=0 (n=1) のときも成り立つ. n=3k+2 のとき,②の両辺にxをかけて, 変形すると mak+2=(x-x2)(x'+x+1)Q(x) +x m3k+2+1=(x-x2)(2+x+1)Q(x)+x2+1 =(x-1)(x'+x+1)Q(x)+(x²+x+1)-x で

回答募集中 回答数: 0
数学 高校生

数bの等比数列の質問です。この問題の⑵で立式がなぜこのようになり、式変形もどのようにやっているかがわかりません。教えていただきたいです。

Date 重要 例題 28 S2m, S2m-1 に分けて和を求める n 一般項がαn=(-1)+1n2 で与えられる数列 {an} に対して, Sn=ak とする。 (1) a2k-1+a2k (k= 1, 2, 3, ......) をんを用いて表せ (2) S= (n=1, 2, 3, ...) と表される。 指針 k=1 (2) 数列{an} の各項は符号が交互に変わるから,和は簡単に求められない。 次のように項を2つずつ区切ってみると Sn=(12-22)+(32-42)+(52-62)+...... =b2 =b1 =b3 上のように数列{bm} を定めると,b=akは自然数)である。よって,m を自然数とすると [1]nが偶数,すなわちn=2mのときはS2m=bx=(az-1+aan)として求め られる。 [2]nが奇数,すなわちn=2m-1のときは,S=S2-1+αm より S2m-1=S2m-a2mであるから, [1] の結果を利用して S2-1 が求められる。 このように、nが偶数の場合と奇数の場合に分けて和を求める a2k-1+αzk=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k (−1)偶数=1, (−1)奇数=-1 ={(2k-1)+2k} CUSTO×{(2k-1)-2k} Sm=(a1+a2) +(as+as)+...... +(a2m-1+azm) 451 1 3種々の数列 [1]=2mmは自然数)のとき = m m S2m (a2k-1+a2k) = (1-4k) n m= 2 k=1 k=1 =m-4.1/23mm+1)=-2m-m -であるから S.=-2(2)-=-n(n+1) [2]=2m-1(mは自然数)のとき azm=(-1)2m+1(2m)=-4m² であるから S2m-1=Szmazm=-2m²-m+4m²=2m²-m n+1 であるから m= 2 S₁=2(n+1)² - n+1 = (n+ 1 (n+1){(n+1)-1} 2 2 Sm=-2m²-mに m= =2を代入して,n の式に直す。 S2m=S2m-1+a2m を利用する。 Szm-1=2m²-mをnの 式に直す。 =1/12m(n+1) [1],[2] から Sn= (-1)"+1 -n(n+1) (*) (*) [1] [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。

回答募集中 回答数: 0