学年

質問の種類

数学 高校生

90. 指針の図では四角形ADGEとCDFGが円に内接すると考える解き方が書かれていますが、全ての四角形は円に内接できるのですか?

引き, り立 道大] れぞ の円 。 り, 0 る。 0 う。 ÉÉÉ 重要 例題 90 方べきの定理と等式の証明 |円に内接する四角形 ABCDの辺AB, CD の延長の交点をE, 辺BC, AD の延 長の交点をFとする。 E, F からこの円に引いた接線の接点をそれぞれS, Tと するとき,等式 ES2+FT2=EF2 が成り立つことを証明せよ。 指針 左辺の ES', FT" は, 方べきの定理 ES' = EC・ED, FT2=FA・FDに現れる。 しかし,右辺のEF2については同じ ようにはいかないし, 三平方の定理も使えない。 そこで,EとFが関係した円を新たにさがしてみよう。 まず,Eが関係した円として, △ADE の外接円が考えられる。 そして,この円とEF の交点をG とすると, 四角形 DCFG も 円に内接することが示される。 よって、右図の赤い2円に関し, 方べきの定理が使える。 121 METS CHART 1点から 接線と割線で方べきの定理 [SPLAT 答 方べきの定理から ES2=EC・ED FT"=FA・FD AADE の外接円と EF の交点を G とすると (3) <EGD=∠BAD また、四角形 ABCD は円に内接する から <DCF=∠BAD ③ ④ から ①, ...... ①. ⑤から ②⑥から したがって ∠EGD=∠DCF ゆえに、四角形 DCFG も円に内接する。 ------ よって、方べきの定理から B EC・ED=EF・EG ・・・・・・ FA・FD=FE・FG ⑤, ES2=EF・EG FT'=FE・FG ES2+FT"=EF (EG+FG) = EF2 1253-663101 ☆ T E F B パッ 練習 右の図のように, AB を直径とする円 0 の一方の半円上に 90点をとり、 他の半円上に点Dをとる。 直線AC, BD の S Do <EG+FG=EF D 基本 89 (**) 011000 E 円に内接する四角形の内角 は、その対角の外角に等し い。 SORER O 1つの内角が,その対角の 外角に等しい。 G P の位置関係

回答募集中 回答数: 0
数学 高校生

84. 解説6行目からの、 角PRB=90°,角PMB=90°より 4点P,B,M,Rが一つの円周上にある理由がわかりません。

434 00000 基本例題 84 円に内接する四角形の利用 二等辺三角形でない △ABCの辺BCの中点を通りBCに垂直な直線と、 △ABCの外接円との交点を P, Q とする。 P, Q から ABに垂線PR, QS をそ れぞれ引くと, ARMS は直角三角形であることを示せ。 指針> ARMS をかいてみる (解答の図) と, M=90° すなわち ∠R+ ∠S=90° となりそうだが,これを直接示すことは困難。 そこで, 前ページと同様に, かくれた円を見つけ出し, 円周角の定理から等しい角を見つける 方針で進める。 特に, かくれた円をさがすには, 直角2つで四角形は円に内接する こと (右図)を利用するとよい。 CHART 四角形と円 直角2つで円くなる 解答 PQは弦 BC の垂直二等分線であるから, △ABCの外接円の直径で ∠PBQ=90° ゆえに ∠BPM + ∠ BQM=90°•••・・・ 口 ∠PRB=90° ∠PMB=90° であるから, 4点P, B, M, Rは1つの円周上にあっ て ∠BPM=∠BRM 同様に ∠BSQ=90°, ∠BMQ=90° であるから, 4点S, B, Q, Mも1つの円周上にあって ∠BQM=∠RSM B M Q A ① ② ③ から ∠BRM + ∠RSM=90° したがって, ARMSは∠M=90°の直角三角形である。 C 直径を弦とする弧の円周角 は90° 100 X 円周角の定理 基本83 ③は、円に内接する四角形 SBQM の内角と外角の関 係から。 検討 上の例題では,②,③から △PBQSARMS (2角相等) よって ∠RMS=∠PBQ=90° と進めてもよい。 なお、4個以上の点が1つの円周上にあるとき, これらは 共円であるといい。これらの点を 共円点という。上の例題では, 点P, B, M, R; 点 S, B, Q, M がそれぞれ共円点である (p.444 3 も参照)。 ∠A=60°の△ABCの頂点 B C から直線CA, ABに下ろした垂線をそれぞれ 三角形である 練習 3 84 BD, CE とし, 辺BCの中点をMとする。 このとき, ADMFは正三角 ことを示せ。

回答募集中 回答数: 0
数学 高校生

80.2 「線分ABの垂直二等分線lに関してAと同じ側にあって、直線AB上にない1点をPとすると」 というこの文章からどうやって解答のような図を想像するのですか??

C ・C は は い 値 三角形の辺と角の大小 基本 例題 80 (1) ∠C=90°の直角三角形 ABCの辺BC上に,頂点と異なる点Pをとると, AP <ABであることを証明せよ。 (②) 線分ABの垂直二等分線ℓに関してAと同じ側にあって,直線AB上にな 1点をPとすると, AP<BP であることを証明せよ。 p.425 基本事項 ② 針三角形において,(辺の大小) (角の大小)が成り立つことを利用する。 (1) AP <AB の代わりに∠B<∠APB を示す。 2つの三角形△ABP と APC に分け て考える。 (2)(1) と同様に,∠PBA <<PAB を示すことを目指す。 l と線分PBとの交点をQとす ると,AQABは二等辺三角形であることに注目。 635 THOSE A CHART 三角形の辺の長さの比較 角の大小にもち込む 解答 (1) △ABCは∠C=90°の直角三角形 であるから ZB<ZC ① △ABP においてBC ∠APB=∠CAP + ∠ C > <C 1 ①② から ∠B << APB」 よって AP <AB (2) 点P, B は l に関して反対側にあるから,線分 PB は ℓ と交わる。その交点を Q とすると, Qは線分PB 上にある (P,Bとは異なる)から <PAB> ∠QAB AQ=BQ また,Qは上にあるから ゆえに ① ② から すなわち よって ... (2) 練習 B P .…..... ∠QAB=∠QBA ∠QBA < ∠PAB ∠PBA <<PAB AP<BP 15* (FOTO)< A ∠C=90° であるから ∠A<90° ∠B <90° 検討 三角形の2辺の大小 上の例題 (2) の結果から, △ABCの2辺AB, ACの長さの大小は,辺 BCの垂直二等分線を利用して判定できることがわかる。つまり 辺BCの垂直二等分線l に関して,点AがBと同じ側にあれば, ABACである。 ∠APB は APCの外角。 C 80+0T+TA ∠B<<C<∠APBから ∠B <∠APB XOL (2) Ado OTAN A B P je M B C wie 200 18 (1) 鈍角三角形の3辺のうち, 鈍角に対する辺が最大であることを証明せよ。 BCの中点をMとする。 AB AC のとき, ∠BAM < ∠CAM p. 429 EX56 427 章 2 三角形の辺と角 12 る 2- $2 た 1数 こ 1 るを O ni 4234

回答募集中 回答数: 0
数学 高校生

80.1<指針> (辺の大小)⇔(角の大小)が成り立つことを利用するというのは、三角形は辺が大きいほどその辺の対角の大きい、という性質を利用するということですか?

D D A' C C FORE> 音にのばす Fac 形の対辺の長さは ASUA 2辺の長さの和は の長さより大きい STRERT 性質 <e, c<f b+c<d+e+f の値 基本例題80 三角形の辺と角の大小 O MO (1) ∠C=90°の直角三角形ABCの辺BC上に,頂点と異なる点Pをとると, AP <ABであることを証明せよ。 If Yo XO 814. to (2)線分 AB の垂直二等分線ℓに関して A と同じ側にあって,直線 AB 上にな 1点をPとすると, AP<BP であることを証明せよ。 p.425 基本事項 ② 指針 02 (1) AP <AB の代わりに∠B<∠APB を示す。 2つの三角形△ABP と APC に分け て考える。 自分のする (角の大小)が成り立つことを利用する。 三角形において,(辺の大小) (21)と同様に,∠PBA <<PAB を示すことを目指す。 l と線分PBとの交点をQとす ると, △QABは二等辺三角形であることに注目。 635 THORA CHART 三角形の辺の長さの比較 角の大小にもち込む 解答 (1) △ABC は ∠C=90°の直角三角形 であるから ZB<ZCSC. ① △ABP においてABCの内心 ∠APB=∠CAP + <C> <C ∠B<∠APB B <QAB=∠QBA ∠QBA < ∠PAB ∠PBA < < PAB AP<BP 180- 2 A 1 ① ② から よって AP <AB (2)点P,Bはℓに関して反対側にあるから,線分 は l と交わる。その交点を Qとすると, Q は線分 PB 上にある (P, B とは異なる)から 017 ∠PAB > ∠QAB ・・・・・・ AQ=BQ また,Q は ℓ上にあるから ゆえに ①②から すなわち よって ∠C=90° であるから ∠A<90°, ∠B<90° PC 60+04+TA ∠APBは△APCの外角。 <<B<<C<∠APBから <B <∠APB 検討 三角形の2辺の大小 上の例題 (2) の結果から, △ABCの2辺AB, ACの長さの大小は,辺 BC の垂直二等分線を利用して判定できることがわかる。 つまり 辺BCの垂直二等分線lに関して,点AがBと同じ側にあれば, AB < AC である。 (2) ALBA je Yo S XO A P B Q M store. P B 18 争に対する辺が最大であることを証明せよ。 427 3章 12 三角形の辺と角 5 or ev る 5 n

回答募集中 回答数: 0