学年

質問の種類

数学 中学生

至急です! 図形の問題です。⑴の②と③のやり方を教えてください。答えは分かりません。お願いします🥺

[2]太郎さんと花子さんは、ロボット掃除機が部屋を走行する様子を見 内は,いろいろな て、動く図形について興味をもった。 次の 図形の内部を円や正方形が動くとき、円や正方形が通過する部分につ いて考えている, 太郎さんと花子さんの会話である。 花子: 長方形の内部を円や正方形が働くとき、 正方形は、長方形の内部をくまなく通過できるね。 でも、円は、長方形の内部で通過できないところがあるよ。 正方形は, どんな図形の内部で もくまなく通過できるのかな。 太郎:どうかな。 三角形の内部では,円も正方形も通過できないところがあるよ。 いろいろな図形 の内部を円や正方形が動く場合, 通過できるところに違いがあるね。 花子:直角二等辺三角形の内部を円や正方形が動くときについて,真上から見た図をかいて考えて みよう。 XZ=YZ, ㄥXZY=90°の直角二等辺三角形XYZの内部を,円0,正方形ABCDが動くとき, 各問いに答えよ。 ただし, 円周率はπとする。 (1)図1で,円〇は辺XY, XZに接しており、2点P,Q図1 ✗ はその接点である。 また, 点Rは直線XOと辺 Y Z との交 点である。 ①~③の問いに答えよ。 ① ∠POQの大きさを求めよ。 ② 線分XR上にある点はどのような点か。 「辺」と「距 離」の語を用いて簡潔に説明せよ。 ③円の半径が2cmであるとき, 線分XP の長さを求め よ。 Y 450 P N か 0 Z

回答募集中 回答数: 0
数学 高校生

赤線のところの計算を教えて欲しいです

280 重要 例 172 正四面体と球 000 1辺の長さがαである正四面体 ABCD がある。 (1) 正四面体 ABCD に外接する球の半径Rをαを用いて表せ。 (2) (1)の半径Rの球と正四面体 ABCDの体積比を求めよ。 (3) 正四面体 ABCD に内接する球の半径r をα を用いて表せ。 (4)(3)の半径の球と正四面体 ABCD の体積比を求めよ。 指針 (1) 頂点Aから底面 ABCD に垂線 AH を下ろす。 外接する球の中心を0とすると, OA=OB=OC=OD (=R) である。 また,直線AH 上の点Pに対して, PB=PC=PD であるから, Oは直線AH上にある。 よって、直角三角形OBH に着目して考える。 πR³ (2)半径Rの球の体積は 1/2 (3) 内接する球の中心をI とすると, Iから正四面体 の各面に下ろした垂線の長さは等しい。 正四面体を Iを頂点とする4つの合同な四面体に分けると (正四面体 ABCD の体積)=4×(四面体IBCD の体積 ) これから, 半径r を求める (例題 167 (3) で三角形の内接円の半径を求めるとき 三角形を3つに分け, 面積を利用したのと同様) (1) 頂点Aから底面 ABCD に垂線 AH を下ろし、外接 する球の中心を0とすると, 0 は線分AH 上にあり B (3) 内接する球の中心を IACD, IABD, IBCD = V=4X (四面体 IBC =4: √3 3 √2 ばから √√6 1= 12 V= 12 ゆえに (4) 半径の球の体積 V2= よって V2 : V ―は基本 昌樹 検討 空間図形の問題は 基本例題 170 と重 空間図形の計量の 求めたい部分 ことが, 解法の 重要例題 172 の 考える問題では ことが多い。 球の中心は 平面は辺 CD a は右の図のよ であり,AB 共有点をもた 着目する平面 をかいて考え おぼえる 解答 OA=OB=R √6 ゆえに OH=AH-OA= a-R AH= √6 3 3a, △OBH は直角三角形であるから, 三平方の定理により BH2+OH = OB2 BH=- a よって 3 (*)*+ (a-R)²=R² 2 170 (1) の結果を用い 整理して - 2√6a a -aR=0 3 3 ゆえに R= 2/6 a=√6 a 4 B (2) 正四面体 ABCD の体積を Vとすると ・V= -a³ √2 √2 <V= -αは基本帳 12 また、半径Rの球の体積を V, とすると V₁==πR³= √6 √6 = 3 8 170 (2) の結果を用い よって V1:V= √6 a √2 NO3 : 12 a³=9π: 2√3 練習 半径1の ③ 172 ただし, 角形の (1)正 (2)球

未解決 回答数: 1