学年

質問の種類

数学 高校生

1番が分かりません(2番は1番が分かれば大丈夫なので省きます) Qの中でPを満たさない領域もあると思うので、証明出来ていないと思うのですが… 逆ならQの方が大きくPを全て含むので分かるんですが、どうして違うのか分からないので解説して欲しいです

基本(例題 131 領域を利用した証明法 x, は実数とする。 (1)x2+y2+2x<3ならばx2+y2-2x<15であることを証明せよ。 (2)x2+y^≦5 が 2x+y≧kの十分条件となる定数kの値の範囲を求めよ。 解答 p.194 基本事項 2 (1)与えられた命題は,式の変形だけでは証明しにくい。このようなときは, 領域を利用した証明法が有効。 この命題の仮定と結論 gの不等式を満たす点(x, y) 全体の集合を、それぞれ P={(x, y)|x2+y'+2x<3}, Q={(x, y)|x2+y^-2x<15} とすると「pg が真である」⇔PCQ であるから,P,Qを図示することによ りらくに証明できる。 (2) 「bgが真である」「はαの十分条件」PCQ したがって、ここでは,{(x, y)|x2+y^≦5}{(x,y)|2x+yk} となるようなkの 値の範囲を、図をかいて求めればよい。 CHART xyの不等式の証明 領域の包含関係利用も有効 (1)x2+y2+2x<3⇔ (x+1)2+y^<22 x2+y²-2x<15⇔(x-1)'+y^<42 P={(x, y)|(x+1)²+y²<2²}, Q={(x, y)|(x-1)^+y2<42} とすると,図から,PCQが成り 立つ。 よって, x2+y2+2x<3ならば P 209 <Pは 円 (x+1)2+y2=22 -3 5 x の内部, Qは 円(x-1)+y2=42 の内部。 x2+y²-2x<15が成り立つ。 (2) P={(x,y)|x2+y2≦5}, Q={(x, y)|2x+yk} とすると x2+y^≦5⇒2x+y≧k が成り立つ ための条件は PCQ k < 0 かつ ゆえに よって,図から 12-0+0-k√5 √√22+12 |-k|≧(√5)2 よって k≤-5, 5≤k k<0 との共通範囲をとって k≤-5 12x+y=k ⇔y=-2x+k 傾きが-2, y切片 15 x 直線。 -√5 √5 (円の中心 (0,0)と -5 直線の距離) (円の半径 ) |-k|=|k|である から k5

解決済み 回答数: 1
数学 高校生

なぜ赤で囲まれたところでは、.... <(1/3)^n(3-a1)なのに回答では<=になっているのか? ChatGPTに聞いてみたけどよくわかりませんでした。教えて欲しいです

重要 30 漸化式と極限 (5) ・・・はさみうちの原理 00000 数列 (a) が 03.42=1+1+α (n=1, 2, 3, ......) を満たすとき (1) 03を証明せよ。 ((3) 数列{an) の極限値を求めよ。 指針 (2) 3-** <1/12 (3-2)を証明せよ。 [ 神戸大] p.34 基本事項 基本 21 ① すべての自然数nについての成立を示す数学的帰納法の利用。 (2)(1)の結果、すなわち、3-0であることを利用。 (3) 漸化式変形して、一般項αをの式で表すのは難しい。そこで、(2)で示した 不等式を利用し、はさみうちの原理を使って数列 (3-α)の極限を求める。 はさみうちの原理 すべてのnについて Disastのとき limp = limg =α ならば なお,p.54.55の補足事項も参照。 lima-a 53 CHART 求めにくい極限 不等式利用ではさみうち 2章 数列の極限 解答 (1) 0<an<3 ...... ① とする。 [1] n=1のとき,与えられた条件から①は成り立つ。 [2] n=kのとき,①が成り立つと仮定すると 0<ak <3 nk+1のときを考えると, 0<ak<3であるから ak+1 1+1+ak >2>0 ak+1=1+1+ak <1+√1+3=3 したがって 0<ak+1 <3 < よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ①は成り立つ。 (2)3-αn+1=2√1+an = 3-an 2+√1+an </13- <1/3 (3-4) \n-1 lim (3)(12) から, n≧2のとき no 3 1\n-1 したがって 03-am = (1/3) =(1/2) (301) (3-α1) = 0 であるから lim(3-an)=0 N1X liman=3 n→∞ 数学的帰納法による。 <0<a<3 <<αから√1+ax >1 <3から√1+αk <2 3-a>0であり,an>0 から an> n≧2のとき, (2) から 3-and- an< (3-an-1) (1/2)(3)……… \n-1 (1/2)(3) 3 =2, n=2のとき a2= 2/2 am1-1/2 を満たす数列{an)について すべての自然数nに対してan>1であることを証明せよ。 「類 関西

解決済み 回答数: 1