学年

質問の種類

数学 高校生

この問題の(3)についての質問です。 f(x)とg(x)のグラフの上下判定をどうやってしているのかがわかりません。 また、どちらも3次式なのに、(3)では1/6公式を使っています。なぜ使えたのか、どうやって使えるものと使えないものを見分けるのか教えてください。 よろしくお願... 続きを読む

正の実数を実数とする。 f(x)=x-3x2 とし, 曲線 y=f(x) を C1, 曲線 y= fx-p+g を C とする。 C2 が点(1, 2) を通るとき, 以下の問に答えよ。 (1) gを用いて表せ。 (2) 2曲線C1, C, が異なる2点で交わることを示せ。 (3)2曲線C1, C, で囲まれた部分の面積をSとする。 S=8 となるとき のかの値を求めよ。 (1)C2は y=f(x-p)+q =(x-p)² - 3(x-p³ + q (3) fx-8(火)=3p(4-1)3xx-(p+0} で、P>0であるから、1<x<P+1のとき、 fw<g(x) fw-g(x) <0 つまり これが点(1-2)を通るとき であるから, -2 = (1-p)² - 3 (1-p)² + 2 よって、8=p-3P (日) (2) (1)より、C2は y=(x-p3-3(x-p5+p-sp ··· Y = x²= (³p + 3) x² + (3p²+ 6p) x − 3p²¬³p ここでg(x)=ペー(3p+3)+(346) X-3-3P とおくと、 fw-g(x) = 3px=(3+6P)x+3p+3P = 3p {ー(p+2)x+(+1} 3P(x-1){x(p+1)} より、f(x)=g()をみたすxは x=1, p+1 ここでP>0より P+1>1であるから、 2曲線CC2はx座標が1, 1.pt1の異なる2点 で交わる。 P+1 S = {gw-fox) | dhe = P+1 -3p) (x-1) 10-(p+1)} obc -3p (-1) + (PH-1) ³² p 2 よってS=8のとき =8 4 18 :pa16 Proより、p=2

解決済み 回答数: 2