学年

質問の種類

情報:IT 高校生

①がエになる理由を教えてください

引数 戻り値 ① Function mysurface (radius As Double) As Double Dim pi As Double Dims As Double ⑤3.14 ⑥⑥ = pi (8) S ✓ = End Function 3 ア. 円の半径 オ. 戻り値 ⑥'円の面積を計算 円周率を定義 戻り値として円の面積を戻す イ. 円の面積 力. radius 右のフローチャートは,線形 探索を行う関数のアルゴリズ ムを表したものである。探索 する値を引数として受け取 り、右図のようにセルA1~ A10に格納されたデータに 対して線形探索を行い,探索 する値が存在した場合は,戻 り値として“あり” を, 存在 しなかった場合は,“なし” を戻す。 空欄 ①~⑤に該当す るものを下のア〜カから選 び, 記号で答えなさい。 ア. 戻り値 = “あり” ウ.flag = 0 オ. Cells(i, 1).value = 引数 考えてみよう 関数を使う意義を考えてみよう。 #. mysurface 開始 i=1 GRAME flag=1 ウ. 整数 (Long) Yes 実数 (Double) 4 flag = 0 ループ 終了 No. イ. 戻り値 = “なし” エ. flag=1の間繰り返し 力. i>10 in 1 i=i+1 4 7. S Yes 戻り値= "なし" (5 ③③ No. 4 ⑤ ア 1 15 カ 工. 実数 (Double) ケ.pi 1 2 3 4 15 6 7 2 (1) 7 S 2 8 10 jus 円の半径 (4 円の面積 実数 pi ⑤5⑤ radius mysurface A (コ. 3.14 1 2 3 4 5 6 7 8 9 [10] 16 2 Ⅰ flag=1の間繰り返し 明和 オ Cells(i).Value=引数 ア戻り値="あげ カ i> 10 flag=0 91

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

微分方程式について質問です🙋 ときどき、答えの方程式をどこまで整理して解答すべきなのかが分からないときがあります。 例えば写真の問題(2)のようなときです。 このままの形でよいと書かれてありますが、どういう状態で解答を終了すべきかの目安はありますか? よろしくお願いします🙇

例題8-2 ベルヌーイの微分方程式:y′+p(x)y=f(x)y") 微分方程式 y/+y=xy3 について, 以下の問いに答えよ。 (1) z=y-2 とおくとき, zが満たすべき微分方程式を求めよ。 (2) 微分方程式 y'+y=xy の一般解を求めよ。 「解説 ベルヌーイの微分方程式:y'+p(x)y=f(x)y" (m=2,3,…) は 1階線形微分方程式の応用である。z=y' -" の置き換えにより, 1階線形微分 方程式になる。 1 [解答](1)z=y-2 より, z'=-2xy-y′ :: y³y'=== Z' 2 さて,y'+y=xy の両辺をy で割ると, y_y'+y^2=x -z'+z=x よって, z'-2z=-2x ・・ 〔答〕 1階線形になった! (2) ²'2z=0 とすると, ‥. A(x)=(2x dz dx =(x-2 = 2z 両辺をxで積分すると, fzzdz=f2dx ... log|z|=2x+C z=Ae²x そこで, z=A(x) e2x とすると, z'=A'(x)e2x+2zより, z'-2z=A'(x)e2x よって,²'-2z=-2x の一般解を z = A(x)ex とすれば, A'(x)ex=-2x ∴.. A'(x)=-2xe-2x -2xe-2x)dx=xe-2x+ ₂-2x + 1² e ²³² + c) e ²¹ = x + 1²/² + ₁ e²x Cezx よって、12/20a-s+/1/2+c^ よって, z=xe 1 2 1 dz z dx e z=y^2=1/1/12より、(x+12+Ce²)y=1 ,2 =2 - 2x + C ・・・ 〔答〕 このままの形でよい。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

統計検定準1級2021年6月の問6です。 [1]の解説で、1行目から2行目に変形できるのはなぜでしょうか。 直感的には分からなくもないのですが計算過程が知りたいです。

問6 2つのグループからのデータを判別する代表的な方法に,フィッシャーの線形判 別がある。 グループ 1, グループ2の2つのグループから2次元データを収集し たものとする。それぞれの標本サイズを ni, 72 とし, データを { 1,T2,...,Zn,}, ny 1. {¥1,92,.., Yng} とおく。 また, それぞれのグループの平均ベクトルを=- n1 8 y=- 722 1 n 72 i=1 722 i=1 とおく。 ただし,n=n+n2 である。 Yi とおく。 さらに, データ全体を {Z1,Z2,..., Zn}, 平均ベクトルをえ= とおき,さらに 〔1〕 各グループの分散共分散行列 S1, S2 とデータ全体の分散共分散行列 S をそれ ぞれ S1 = S2= n1 1 n1 n2 i=1 722 i=1 n (x₁ - x)(x₁ - x) ¹ i=1 (Yi — Y) (Yi – ÿ) - S= 1/2 (2₁-2) (2₁ - 2) T i=1 Sw=115₁ +25₂ n n n2 n1 - SB = 1/¹² ( x − z ) ( x − z ) ¹ + 2/2² (ÿ – z) (ÿ – z)™ n n Dis ① つねにS> Sw+SB が成り立つ。 ② つねにS=Sw + SB が成り立つ。 ③ つねに S < Sw + SB が成り立つ。 ④ 上記に正しいものは一つもない。 と定義する。ここで「は転置を表すとする。 3つの行列 S, Sw, SB の関係につい て、次の①~④のうちから最も適切なものを一つ選べ。 ただし, P > Q は行列 P-Q の固有値がすべて正であることを意味する。 10

解決済み 回答数: 1
数学 高校生

ユークリッドの互助法の式まではわかりますが、 代入して行くところからがよくわかりません わかる方テスト間際なので教えてください😢 よろしくお願いします!!

例題 311 不定方程式 〔8〕... 2元1次 (互除法の利用) 方程式 67x+107y=3 を満たす整数の組(x, y) をすべて求めよ。 思考のプロセス Wo Action 1次不定方程式は、 まず 1組の解を見つけよ しかし、 係数 67, 107 が大きく, 1組の解を見つけにくい。 Action» 1 次不定方程式の1組の解は,互除法を利用して求めよ 段階的に考える x,yの係数 67107 で互除法 107 = 67×1 + 40 67 = 40×1+27 40= 27×1+ 13 27 = 13×2+1 301 解 方程式 67x+107y = 3 例題 107 = 67×1 +40 より 67 = 40 × 1 +27 より 40 = 27 × 1 + 13 より 27 = 13×2+1 より ⑤ に ④ を代入すると これに ③ を代入して この両辺に3を掛けて 「余り」を残して ( 余り 107-67×1=40 67-40×1= 27 40-27×1=13 27-13×2=1 ① - ⑥ より 移項 67 + 107・ ⑦ に代入すると よって、求める整数の組は x=107n+24 y=-67n-15 67 × 24 + 107 × (−15) = 3 A B ... D 40-27×1=13 27-13×2=1 y=-67n-15 (最後⑩から始めて 「余り」を次々に代入) 27-13×2=1 40-27 ×1= |= 1 が得られる。 与式の右辺は3だが,どうすればよいか? (nは整数) D ・① の係数 67 と 107 について 107-67×1= 40 67-40×1= 27 (5) 27- (40-27 ×1) x2 = 1 てこの27 × 3+ 40 × (−2) = 1 ( 67-40×1) × 3+ 40 × (−2)=1 67 × 3 +40 × (−5)=1 さらに②を代入して 67×3+ (107-67×1) × (−5)=1 67 × 8 + 107 × (−5) =1 C ... B A ..6 67(x-24) +107(y + 15) = 0 67(x-24)=-107(y+15) 67 と 107 は互いに素であるから,x-24は107の倍数となる。 よって,x-24 = 107 (nは整数)とおくと x = 107n+24 67-40×1= 107-67×1 40 代入して数 (3) 例題 309 ユークリッドの互除法を 用いる。 ④ を代入して27と 整理する。 ③ を代入して 67 整理する Go Ahe 元1次 すなわち ( ② を代入して67 整理する 与式の右辺とそろえる。 (x, y) = (24, -15) 1組の解である。以下は 例題 309 の方法と同じ。 このこ まず最 (定) a $ それ NEE [

解決済み 回答数: 1