学年

教科

質問の種類

資格 大学生・専門学校生・社会人

この問題の資料に出てくる1.2の仕分けが苦手です。 どこの分野を勉強し直せばいいと思いますか? 教えていただけると幸いです🙇‍♀️

題 15-5 17-41 成される欄を ①から36 より示したうえでその金額を答え、さらにAからEに記載される用語と金額を答えなさい。 次の資料にもとづいて, 株主資本等変動計算書を作成した際に金額が記載さ 会計期間は20X8年4月1日から20X9年3月31日までの1年である。 同計算書の金額表示単位は千 円とし,減少となる金額については「△」を付すこと。 [資料] 1.20X8年6月24日に開催された定時株主総会において剰余金の配当と計数の変動を次のように 決定し,20X8年7月5日に配当の支払が完了している。 なお、当社の当期中における剰余金の 配当はこれのみである。 配当金 6,440千円 (原資:その他利益剰余金(繰越利益剰余金)) A 準備金 会社法が定める金額 別途積立金 2,200千円 2.20X8年9月10日,新社屋の完成引渡しに際し,新築積立金 18,300千円を取り崩した。 000,008.00 a 3.20X9年3月31日,決算において,その他有価証券の時価評価を行った。その際,法定実効 率25% により 税効果会計を適用している。 時価の推移は以下のとおりであった。 なお, 期中 おけるその他有価証券の売買はなかった。 前期末時価 38,120千円 当期末時価 31,940千円 処理を行う 4.20X9年3月31日,決算において,当期純損失が4,989千円と確定した。 画 15,500 2.200 ( 2.700 300円 Ⅱ 000. 1年分を支払 ( 養 料 園

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

空間座標の反転ではどうして(2.16)と(2.17)が成り立つのでしょうか

@y/(の : の / | 2 りー PO 2.15) をうる- 2.14) と (2②.15) とを比較すると, 右手系 と左手系とでは, 右辺 の Lorentz の力の第2 項の符生に違いがある. この結論は他の成分についてもゃ同様 でぁる. したがって, Lorentz の力の作用のもとにおける京電荷の 運動方程式 は。 空間座標反転のもとで共変的でないと考えるかもしれない. しかし, 上の謙 論は (2.13) の仮定にや とづくもので, 電場については 婦(%/。のニー(*, の (2.16) でよいが, 磁場の変換性は (2.13) のかわりに (*/ の ー P(*,の 2.17 であたえられる. (2.16) と (2. 17) の変換性のもとでは, 運動方程式の *" 成分は 2 gy/ gs/ ーーの ー 6。(ダ(の 9+g ッ し(7の, の一 0 ぢし(7(の), j (2.18) となって, これは (2.14) とまったく同形である. (2.17) の型の変換をするベク トルを軸性ベクトル (axial vector) といい, (2.16) のよう な普通の変換をするべ クトルを極性ベクトル (polar vector) という. たとえば, 二つの極性ベクトルの ベクトル積は軸性ペクトルである. 磁場はペクトル場であるが, 普通のベクトル 場ではなくて, 軸性ベクトル場である・ 2②.16) と (2.17) の変換を用いるとすぐに, 左手系で も右手系のそれとまった く同形の Maxwell の方程式 2g(*/ 7 rot' 及(*。 の十 =0 の/(%/,7 sa 5 ro (W。 のーー uo00 diy の(*, のニの(@5 div7 (% の三 がなりたつことを示せる. この証明は読 人 先朋忠相」

解決済み 回答数: 1
1/2