学年

教科

質問の種類

化学 大学生・専門学校生・社会人

至急 有効数字について この問題だと有効数字の幅が8.35〜8.45で、実際の誤差幅は8.27〜8.51です。 有効数字は数値がどこまで信頼出来るかを示した物だと思うのですが、仮に体積が8.51だったら、有効数字で示した値の中に答えが含まれていないことになります。 これは... 続きを読む

問題1-10 電卓を用いて以下を計算せよ. (1) 2÷7 (2) 直方体の体積を求めるために, Aさんが縦の長さ, Bさんが 横 Cさんが高さを測定した. 彼らはそれぞれ10cm, 1cm, 0.1mm刻みの精度の異なったものさし定規を用いて測定してし www 10cm まい, これらの値として4.2m,234cm, 85.35cm を得た. 直方 体の体積はいくつと表示するのがベストだろうか, 数値はどこま で信用できるだろうか. 0.1mm 1 cm (2)単位を合わせると 4.2m, 2.34m, 0.8535m となるので, 4.2m×2.34m×0.8535m= 8.388198m² なる値が求まる. しかし, 4.2mという測定値は4.15 4.2 4.25を四捨五 入して得た値なので4.2m±0.05m を意味する。 つまり、この値は±0.05m (± 0.05/4.2 ×100=±1.2%) の誤差をもつ。 同様に2.34mは2.34±0.005 (誤差± 0.005/2.34×100= ± 0.21%), 0.8535m は 0.8535 ± 0.00005 (誤差± 0.00005/0.8535 × 100=0.006%) を意味す る. したがって、この値を用いて計算した8.388198m² なる体積は± 1.2% ± 0.21% ± 0.006% =±1.4% の誤差をもつ つまり (8.388198 ± 0.117435) m である. それゆえ,この直 方体の体積は8.388 0.117=8.39 ±0.12(8.27~8.51)=8.4m² と表せば十分である. 8.4 の意味は 8.35~8.45 であり、 実際の誤差幅よりも小さい. 8.4 という答ですら多 めの有効数字を示したことになる.つまり,計算結果は4.2, 2.34, 0.8535の三つの測 定値の有効数字の桁数 2, 3, 4桁のうちのもっとも小さい桁数2桁に合わせて示せばよ いことがわかる (1桁下の3桁目を四捨五入して示すのが常識) 実験データ処理におけ る有効数字の扱いは, 以上のように測定値の精度に依存する すなわち, 有効数字は測定値の精度を反映したものである. 1000's GD 01 (0 0800.0 -0.21% 12% 12% x6/180.18=0.3999(0.4000)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

(3)(4)がわかりません

で一定に保ったまま kPaった。 合気体に気火花をさせたのち、容器のを 27°すると. とき 生成した水の % がしてい 容器はCkPa となった る。(H100.R=8.31×10 1.01×1051760mm K・mol). A:(70.4.0 30 (エ) 97.3730 (ア) 35 36 (エ) 70 (オ) (ア) 18 24 (エ) 30 95 324 物質の二 60. 連結球 気体の燃焼〉 に最も適 るものを,それぞれ下から選べ。 片側を閉したいガラス管の内部を水で満たし銀だめの中で倒立させた。 この水銀柱の異空部水蒸気で飽和させると、1気において, 水銀柱の高さ は 730mm であった。 270における水の飽和圧は (AkPaである。 27℃で、水素が圧力30 Paで詰められた耐性容 各積2,酸素が圧力 で詰められた耐圧容 3.0L) カコックスで連結されている。温度を 容積 を開けての気体をすると、気体の全圧 33 べてなくなった)ところでピストンを止めた (状態II)。その後,さらにピストンへの圧 力を下げた状態Ⅲ)。 飽和水蒸気圧は図2に示すように変化し, 60℃においては 0.20 × 10 Paである。 容器内の液体の体積は無視できるものとして,(1)~(4)に答えよ。 ただし、水素は水に溶解しないものとする。 (1),(3)の答えは有効数字2桁で記せ。 (R=8.3×10 Pa・L/(K・mol)) ピストン 飽和水蒸気圧 [×10Pa] 1.00- 0.90- 0.80- 0.70- 0.60- 0.50- 0.40- 0.30- 0.20- 0.10- 0.00- 0 10 20 30 40 50 60 70 80 90100 温度 [℃] 図2 気体、 液体 状態 I 状態ⅡI 状態Ⅲ 図1 DO 25 350 (オ)6775 ( 100 [17田大 改] 結球と体の圧力> 気体は を扱い 17°C 7°C 連結部分およ 1.0,C=1, N-140=16) AR=8.31×10° Pa・L/(m・K), 飽和水蒸気圧 とする。 また、 (1) 状態 I における容器内の体積を求めよ。 思考 (2) 状態 Iにおける容器内の体積を固定したまま、温度を上げた。 容器内の水がすべて 水蒸気に変化する温度 (液体の水がすべてなくなる温度)は,次の(a)~(e) のどの温度範 囲に含まれるか。 最も適当なものを一つ選べ。 (a) 60~70°C (b) 70-80°C (c) 80-90°C (3) 状態Ⅱにおける容器内の体積を求めよ。 (d)90~100℃ (e) 100℃以上 (4) 状態Ⅰから状態Ⅲへの変化によって, 容器内の圧力Pと体積Vの関係はどのよう に変化するか。 最も適当な図を次の (a)~(e)から一つ選べ。 天体の水の ものとす (a) V に示して で各にメタン32 いて、コックをしたれ には空気 コック A 容器 B (b) + II (c) (d) (e) Ⅱ 20% 11.52 れた。 30.0(L) に保ったを開き、 時間が経 容器内の人 燃焼 A, 器 P →P [19 防衛医大 〕 にした。この容器内の [Pa〕 を求めよ。 生成した 存在 のとする。 さらに を開いたまま 063 〈理想気体と実在気体〉 「このとき,①容 内を 在する液体の水の物質量 [mol] を求めよ。 に存在する水蒸気 [mo 量 容器B内を17 よび ②容器内に存 保っ 以下の文中の空欄 に入る当を語を記せ。 62. 〈混合気体の体積〉 [14 京都府医大 改〕 実在気体の理想体からのを指して れる。ここではhp (Parは体積 P の値がよく用 PT) はK)であ 物質量(mol 図1に示すような体積と温度を自由に変えることのできるピストン付き容器に 0.15molの水素と0.20molの水を入れ, 温度を60℃に保ち、ピストンに0.50×105 Pa の圧力をかけた。このとき,水は一部液体であった(状態Ⅰ)。 温度を一定に保ったまま, ピストンへの圧力をゆっくり下げ, 容器内の水がすべて水蒸気になった (液体の水がす とかが一定の条件 Z値の力依存 多くの実在気体では、Pを 俺から大きく と、乙はからんするさらにPを大き やがて するの値が いる 大きくしたときと するの エ ウ が現れるた が強 れるためで 名古

回答募集中 回答数: 0
1/131