学年

教科

質問の種類

資格 大学生・専門学校生・社会人

こちらの2問目についてなのですが、前受家賃の答えが1,490,000になりますがこの1,090,000はどこから来たのか分かりません💦 理解しようと自分なりに書き込みをしたり解説読んだりしましたがわかりません。 もし良ければ、やり方・計算方法教えてくださいよろしくお願いします。

第2問 20点 (1) 山梨株式会社 (決算年1回、3月31日) における次の取引にもとづいて、 答案用紙 示した受取家賃勘定と前受家賃勘定を記入しなさい。 ただし、解答にあたり次の点に注 意すること。 1. 取引は上から順に記入すること。 2. 日付欄は採点対象外とする。 3. 勘定科目および語句は下記の語群から選択し、 アークの記号で解答すること。 [語群] ア.前期繰越,次期繰越 ウ.受取工.前受才.前受家賃 カ受取家賃 キ.損益ク. 前払 ×7年4月1日 前期決算日に物件Aに対する今年度4月から7月までの前受家賃を計上してい ので、再振替仕訳を行った。 1か月分の家賃は¥100,000である。 ×7年8月1日 物件Aに対する向こう半年分の家賃 (8月から1月まで)が当座預金口座に振り 込まれた。 1か月分の家賃に変更はない。 ×7年9月1日 物件Bに対する向こう1年分の家賃が当座預金口座に振り込まれた。 この取引は 新規で、1か月分の家賃は¥130,000である。 x8年2月1日 物件Aに対する向こう半年分の家賃 (2月から7月まで) が当座預金口座に振り 込まれた。 今回から1か月分の家賃は¥110,000に値上げしている。 x8年3月31日 決算日を迎え、 前受家賃を計上した。 (2) 次の文章の①から④にあてはまる最も適切な語句を選択して記号で答えなさい。 (税金) 1. 貸倒引当金は受取手形や売掛金に対する ( 1 ) 勘定である。 ア.仕入.負債 ウ. 売上 エ. 振替 オ. 評価 2.買掛金元帳は、仕入先ごとの買掛金の増減を記録する(②)である。 ア.補助簿.起票 ウ. 仕入帳 エ. 主要簿 オ. 当座預金出納帳 3.建物の修繕によってその機能が向上し価値が増加した場合、(③) 勘定で処理する。 ア. 雑益. 修繕費 ウ. 貯蔵品 エ. 建物 才. 評価 4.3伝票制を採用している場合、入金伝票と出金伝票の他に、通常(4) 伝票が用いられる。 ア. 売上 .振替 ウ. 入金 エ.仕入 オ.出金

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
1/9