学年

教科

質問の種類

化学 大学生・専門学校生・社会人

bの問題で、解答の最後の1行の意味が分からないので教えて欲しいです

問4 次の文章を読み, 後の問い (ab) に答えよ。 Bがコックでつながれている。 コックを閉じた状態で, 容器A には, 一酸化炭 容積が2.0Lの容器Aと, ピストン付きで容積を変化させることのできる容器 素 CO を 27℃で 1.0×10°Pa になるように封入した。また,容器 B には、容積 が 1.0L になる位置でピストンを固定した状態で,酸素 O2 を 27℃で3.0×10 Paになるように封入した。 これを状態Ⅰ とする (図3)。 b状態Iからコックを開いて, 容器Bのピストンを完全に押し込んで、容器 B内の気体をすべて容器 Aに移したのち, 再びコックを閉じた。 次に, 容器 A内の気体に点火し, COを完全に燃焼させた。 燃焼後, 温度を27℃に戻し たとき、容器 A内の圧力は何Pa になるか。 最も適当な数値を,次の①~⑥の うちから一つ選べ。 27 Pa 容器A コック 容器 B Coo O2 ピストン 1.0×105 Pa 3.0×10 Pa Joa 2.0L 1.0L 図3 状態 Iにおける容器 A, B内の様子 a 状態Ⅰから, ピストンを固定したままコックを開いて, 十分な時間放置した。 このとき、容器内の圧力は何 Pa になるか。 最も適当な数値を、次の①~⑥の うちから一つ選べ。 ただし, 容器内の温度は27℃に保たれているものとする。 26 Pa ① 1.0×105 (2) 1.7×105 ③ 2.0 × 105 2.3×105 3.0×105 ⑥ 4.0 × 105 ① 1.0×105 ④ 2.5×105 ② 1.5×105 2.0×105 3.0×105 ⑥ 3.5 × 105 -33- 20

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題6、7の答えが分かりません。教えて頂きたいです、、

問題 6 正しいのはどれか。2つ選べ。 1. 電力量は抵抗にかかる電圧と流れる電流の積で表される。 ② 電子1個を IV の電界に逆らって移動させるのに必要な仕事は 1J である。 3.直列に接続された各抵抗に流れる電流量は各抵抗の抵抗値に比例する。 4 回路中の抵抗で消費される電気エネルギーは全てジュール熱に変換される。 ⑤.電気回路の任意の点において、流入する電流の総和と流出する電流の総和は常に等しい。 問題 76本の平行な長い直線の導線が図のように正六角形の頂点A、B、C、D、E、Fの位置に並べられている。これら の導線はいずれも紙面に垂直な方向に張られており、そのうち A、C、D、Eを通る導線には紙面の裏から表の向き、B Fを通る導線には表から裏の向きに、いずれも 1.0Aの電流が流れている。このとき、正六角形の中心0に生じる磁場 の向きで正しいのはどれか。 1. 上向き (OからAに向から向き) 2. 下向き (OからDに向から向き) 3. 左向き (Oから線分 BCの中点に向から向き) 4. 右向き (Oから線分EF の中点に向かう向き) 5. それ以外の向き 問題8 直径1mm、長さ10mの銅線の抵抗 [Ω] に最も近いのはどれか。 ただし、銅の抵抗率はo=1,673×10-°C とする。 BO .O OD F OE

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

シグマを使った数列の問題について質問です シグマの上の部分に、n-1などの時かつシグマの中身の部分の指数にk-1など、指数が文字のみではない時はどのような計算をするのですか 例えば、下線部がどのような計算をしたのかわからないです

基礎問 200 第7章 数 列 130 群数列(I) 精講 1から順に並べた自然数を, 1/2, 3/4, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 15 16, のように、第n群(n=1, 2, ...) が 27-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ (2) 第n群に含まれる数の総和を求めよ. (3) 3000は第何群の何番目にあるか. ある規則のある数列に区切りを入れて固まりを作ってできる群数列 を考えるときは, 「もとの数列ではじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します。 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて (1+2+..+27-2) 項目. すなわち, (27-1-1) 項目だからその数字は 2-1-1 よって、 第n群の最初の数は (2-1-1)+1=2-1 (2) (1)より,第2群に含まれる数は 初項2"-1 公差 1 項数2の等差数列. よって, 求める総和は 10 ・2n- 2-¹ (2-2-¹+(2-1-1). 1) 2 【各群の最後の数が基 準 【等比数列の和の公式 を用いて計算する AD =2"-2(2.2-1+2"-1-1)=2"-2(3.2"-'-1) (別解) 2行目は初項2"-1 末項2"-1. 項数2"-1の等差数列と考えて

回答募集中 回答数: 0
1/3