学年

教科

質問の種類

数学 大学生・専門学校生・社会人

図とか書いても 解答の ここで、のあとの解説が理解できないです、、 どなたか一から教えて欲しいです

72 第2章 関数 ( 1変数 ) 重要 例題 016 逆三角関数の性質 sin(Sin't+Cos't) = 1 を示せ。 指針 逆三角関数 Sin't Cost の定義を確認する 問題である。 これらはどちらも、閉区間 (0<x) (1) mil 重要 y4 関数 f の lim n→∞ [-1, 1] 上で定義された連続関数である。 そし て, Sin' は値域が [一であり、 Sin 11 0 x 0 指針 必 Cos t Cos't は値が [0, π] である。 これらを踏ま えて三角関数の定義と照らし合わせると, -1 解答 1 Sin' Cost がどこの角度を測っているか。 が、図のようにわかる。 [1] ここでは,tの符号によって角の測り方が変わるから三角関数の加法定理 sin(a+β)=sina cos β+ cosasinβ を使って機械的に解こう。 CHART 逆三角関数 三角関数の逆関数 x=siny y=Sin ¹x x=cos y y=Cos¹x x=tany⇔y=Tan'x 解答 加法定理により sin(Sin 't+Cos-lt)=sin(Sin't)cos(Cos-lt)+cos (Sin-1t)sin (Cos-'t) =t2+cos (Sin't) sin (Cos 't) 77 ここでより, cos(Sin-lt) 20であるから cos(int)=√1-sin'(Sin't)=√1-ゼ また,Costaより, sin (Cos 't) 20であるから を作 sin Cost)=√1-cos" (Cos 't)=√1 よって sin(Sin't+Cost)=t2+(√1-t2)=1 参考例えば, t>0 の場合, Cost と Sin't は, それぞれ右で図示され 角度を与える。 の正の向きから時計回りに測った角度である。 ただし Cos-'t は x 軸の正の向きから反時計回りに、Sin't y tsug y Mint Cost この図から、閉区間[0, 1] 上のすべての実数に対し、 Sin' + Cos = 2 となることがわかる。 0 t1x したがって sin(Sin-'t+Cos^'t)=sinz=1

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

加法定理です! 基本165の問題が分からないことがあります。 αは鋭角であるから、と答えにあるのですが、鋭角と鈍角はどうやって見分けるのでしょうか?また、Sinα=‪√‬1-cos2乗αの式はどの公式をつかっているのでしょうか? お願いしますm(_ _)m

27 加法定理 ① 正弦余弦の加法定理 ① sin (a+β)=sinacosβ+cosasin β ② sin (a-β)=sinacosβ-cos asin β 3 cos (a+8)=cos a cos B-sinasinß ④ cos (a-β)=cosacosβ+sinasin β 正接の加法定理 tana + tan B tan(a+8)=7 1-tanatan B 2直線のなす鋭角 x軸の正の部分から2直線y=mix ...... 図のようにα, βとすると 2直線①、②のなす角0 (0<0<^) [1] 0<α-B <1のとき 0=a-B 13 sin 1x, cos YA a (2) sing= 0 B 13 127, 4 ② tan (α-β)= π, ・①,y=mzx..... tang=m, tanβ=mz = 基本 163 加法定理を用いて, sin 165°, cos 165°tan 165°の値を求めよ。 13 π 3 19 基本 164 1/12=1/7/8/1/1 + 3 5 -π+- 3 12' 4 6 ミル tana-tan 1+tan atan B は次のようになる。 [2] <a-Bのとき 0=-(α-B) YA A 19 tan 12 の値を求めよ。 ITEM a B まで測った角を x であることを用いて, 基本 165αが鋭角, βが鈍角であるとき、次の値を求めよ。 (1) cos a=- sinβ=1のとき sin(a+B), cos(a+B) 1 3' 12 =1/13, cosB=- β= のとき sin(α-β), cos(α-B) 13 (3) tana=5, tanß=-3 M¿‡ tan(a+ß), tan (α-ß)

解決済み 回答数: 2
1/3