学年

教科

質問の種類

物理 大学生・専門学校生・社会人

大学古典力学の2質点系の問題です。 この問題の(II)で重心Gに対する相対位置ベクトルとして、解答下線部のようにおいていますが、何故こうなるのですか?分かる方がいましたら教えて下さい。

演習問題 96 2質点系の運動 (I) 右図のように xyz 座標をとる。 長さ 3r の質量の無視できる棒の両端に,それ ぞれ質量 2mmの質点を取り付けたも のが、その重心Gのまわりを一定の角 速度で回転している。 重力はy軸の負voy = の向きに働くものとし、この2質点系の y4 2m cart ro Wo m Vo. vosino- Pox VoCose ス 重心Gを, 原点から、時刻 t = 0 のときに 仰角6 (0<</2)初速度 Do = [Vox, Voy, 0]. (vo=||vo||) で投げ上げるものとする。 このとき、この回転しながら運動する 2質点系について、時刻におけ る (i) 全運動量P, (ii) 全運動エネルギーK, () 全角運動量Lを 求めよ。 また, (iv) この2質点系の位置エネルギーを求め、力学的 ネルギーが保存されることを示せ。 ただし, 2質点系の回転はxy 平面 内で起こるものとし、 空気抵抗は無視する。 ヒント! (i) 全運動量P=PG, (ii) 全運動エネルギーK=KG+K', (i) 全角運動量L=Lc+L' の公式通りに求める。 (iv) 位置エネルギーの基 準を zx平面にとる。 解答&解説 P=Pc=3mUG (ii) 2質 K = (KG ここ KG= 質量 重心 K質重Gがで対 G が, で 対 Vol (速 V01 G Toz こ Vo さ V02 -v=jo =[var-gt+v 以 G (3m) (i) 2質点系の全運動量Pは,全質量 3m が集中したと考えたときの重心Gの運動 量 Pc に等しい。 重心Gには,重力に よる加速度g = [0,-g, 0] が生じるので, その速度UGx成分は, Per PacOS (一定成分は, Voy = - gt+ vosino となる。 t = 0 のとき Poy= Posin より ∴Uc=rc=[vocose, -gt + vasin0, 0] ……① より, P=Pc=3mUc=3m [vocoso, gt + vesin 0, 0] となる。 K 162

解決済み 回答数: 1
化学 大学生・専門学校生・社会人

1-6式と、1-10式の違いはなんでしょうか...。 回答よろしくお願いします🙇‍♀️🙏

自熱電庫 T山01, I884年にこれらの波長(入 (nm]) が 大式に従うことを見出した。 ス=364.56 スクリーン スリット )原子核があって、 (1-4) ごある3。 古典物理学を適用すえ 果,電子は次第にエラ 。しかし、実際は1- スペクトルではなく 盾は,古典物理学の かけとなった。 -4 ト/1-4)にカ=3を代入すると,次のような波長の光(赤色)となる。 = 656.208 nm nは3以上の整数 (1-5) 3° プリズムの材質を石英に替えると,紫外線領域のライマン系列 (Lyman es)とよばれる一連の発光線が得られ、塩化ナトリウム結晶をプリズム 一用いると、赤外線領域のパッシェン系列(Paschen series),ブラケット 入= 364.56 3°-4 1000) は,1890年に波長の逆数の波数vを用いて,可視光領域,紫外線領域, (1-6) る列(Brakett series)がそれぞれ得られることがわかった。 1]ュードベリ(Johannes Rydberg: 1854~1919)とリッツ(Walter Ritz : 1878~ 赤外線領域のすべての発光線を説明できる次式を提案した。 1 こをかけると、放 ーの高い水素原 ると、 水素原子 デーー() ア=チーR/1 水素放電管からの発光スペクトルのすべての波長を説明できる,この式 (1-6)のもつ意味は一体何なのだろうか。以下,順にみていこう。 > n>0 いずれも整数 ここで,Rはリュードベリ定数(実験値R=1.09737 × 10' m-')である。 (1) ボーアの水素原子モデル ボーア(Niels Henrik David Bohr : 1885~1962)は, 1943年に水素の発光スペク ような3つ トルを説明する理論を提唱した。 プランクによるエネルギー量子の概念 16

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この問題の(2)が分かりません。教えてください

【間 11 (第2回レポート 【問4】 の関連問題) 図のように, 一部を切り取った半径 R 円欄の断面図 の円環の左端に, 鉛直上方から質量 m のおもり落とし, 円環に沿って滑らせる。 最下 点をおもりが通過したときの時刻をt%3D0, 速さが v0であったとして, 以下の間に答え よ、ただし, 重力加速度の大きさをg, 円環とおもりの間には摩擦は無いものとする。 また,円環の中心を原点とし, 鉛直下向きを 軸, 水平右向きをy軸にとることにし. また,回転角0は, 軸から反時計回りを正の方向として測ることにする。 (1) この問題設定においては, カ学的エネルギー保存則の成立条件が満たされているこ とを示せ。 (2) おもりが円環面上にあるとき, 位置エネルギーの基準点を円環の最下点として, カ 学的エネルギー保存則の式を立てると mg mg= mu° + mgR(1 - cose) となる(v= Ró). おもりが最上点(03Dπ) にあるときは, mg= m+ 2mgR となるので、v0 の下限は vo 2 v4gR でよいことになるが, 第2回レポート 【問4】 (4) では, vo の下限はこれより大き く5gR であることが示されていたので, V4gRを下限とするのは誤りであることがわかる, そこで, この力学的エネ ルギー保存則による解法が誤りである理由 (どこに誤りがあるのか)を答えよ。

解決済み 回答数: 1
1/2