学年

教科

質問の種類

数学 大学生・専門学校生・社会人

写真はロピタルの定理をε-δ論法を用いて証明したものについてですがらわからないことが3つあります。 ①なぜδをさらに小さくすると、青線のような不等式が成り立つのですか? ②どの部分の不等式を変形したら赤線の不等式が出てくるのですか? ③赤線の不等式が成り立つときなぜ定理が証... 続きを読む

定理4.6 f(x),g(x) が (a,b) 上の微分可能な関数で lim f(x) = lim_g(x) =+∞ エロ+ f'(エ) をみたしているとする。 このとき 極限 lim = = A が存在するならば x+a+ g'(x) f(x) lim == A za+ g(x) が成り立つ。なおこの定理は lim の部分をすべて lim あるいは lim, +α14 lim におきかえても成立する. b- 8 ◆証明 任意の0<<1に対して,あるδ0が存在し,a<x<a+δに対して f'(x) A-< <A+EAKE g'(x) が成り立つ。必要なら80をさらに小さくとって,f(x)>0,g(z) >O(a<x< a+δ) となるようにできる。 コーシーの平均値定理から, a<x<a +δに対して,あ ∈ (+8)が存在し, f(x)-f(a+8) f'(g) = g(x) − g(a+8) g'(§) が成り立つ。ゆえに A-ε< f(x)-f(a+8) である. したがって f(x) = + g(x) g(x) である. ここで 9(x) − g(a+6) = 1 g(x) g(a+6) (エ) f(a+8) →1 (x → a+), g(x) − g(a + 8) f(x)-f(a+δ)g(x)-g(a+8) f(a+8) 9(x) g(x) − g(a+8) <A+e 価 以 grat (エ) 0(土)であるから,必要ならばさらにを小さくとることにより1> g(z)-g(a+6) f(a +8) g(x) >1-ɛ, 0< <e としてよい。ゆえに g(x) f(x) (A+c) +g> >(A-) (1-e)=A-e(A+1-c) g(x) が成り立つ。よって定理が証明された, 残りの主張も同様の議論で証明できる.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

標本平均についてです。 写真の問題を見たときに、①0か1の2択であること②政党支持率は30%で一定であること③0か1の番号に振り分けることを繰り返すことの3つの条件が揃っていたので、二項分布だと思い、二項分布B(n,0.3)に従うと考えました。 そのため問1の期待値を0.3... 続きを読む

基本 例題164 標本平均の期待値,標準偏差 ある県において, 参議院議員選挙における有権者のA政党支持率は30%である という。この県の有権者の中から,無作為にη人を抽出するとき,k番目に抽出 された人が A 政党支持なら1, 不支持なら0の値を対応させる確率変数を Xんと する。 (1) 標本平均 X= X+X2+・・・・・+Xn について, 期待値E (X) を求めよ。 059 n | (2) 標本平均 X の標準偏差 (X) を 0.02以下にするためには, 抽出される標本 の大きさは、少なくとも何人以上必要であるか。 指針 (1) まず, 母平均 m を求める。 p.636 基本事項 4 4章 21 (2)まず,母標準偏差のを求める。そして, o(X)≦0.02 すなわち 1 小の自然数 n を求める。 0.02 を満たす最 n 解答 (1)母集団における変量は,A 政党支持なら1,不支持なら0 という2つの値をとる。 Xh 1 0 at P 0.3 0.7 1 よって, 母平均は m=1・0.3+0・0.7 = 0.3 (2)母標準偏差は ゆえに EX) =m=0.3 o=√(12・0.3+020.7) -m²=√0.3-0.09 =√0.21 統計的な推測 よって o(X) = √n 0.21 √n 28.18 √0.21 0.21 0.02 とすると,両辺を2乗して ≦0.0004 n n 小数を分数に直して考えて もよい。 (S) T 2100 0.21 0.21 ゆえに NZ = =525 ≦0.02 から 0.0004 4 √n この不等式を満たす最小の自然数n は n=525 √21 したがって、少なくとも525人以上必要である。 1-5 よって1/15 n 25 21

回答募集中 回答数: 0
1/12