学年

教科

質問の種類

化学 大学生・専門学校生・社会人

1-6式と、1-10式の違いはなんでしょうか...。 回答よろしくお願いします🙇‍♀️🙏

自熱電庫 T山01, I884年にこれらの波長(入 (nm]) が 大式に従うことを見出した。 ス=364.56 スクリーン スリット )原子核があって、 (1-4) ごある3。 古典物理学を適用すえ 果,電子は次第にエラ 。しかし、実際は1- スペクトルではなく 盾は,古典物理学の かけとなった。 -4 ト/1-4)にカ=3を代入すると,次のような波長の光(赤色)となる。 = 656.208 nm nは3以上の整数 (1-5) 3° プリズムの材質を石英に替えると,紫外線領域のライマン系列 (Lyman es)とよばれる一連の発光線が得られ、塩化ナトリウム結晶をプリズム 一用いると、赤外線領域のパッシェン系列(Paschen series),ブラケット 入= 364.56 3°-4 1000) は,1890年に波長の逆数の波数vを用いて,可視光領域,紫外線領域, (1-6) る列(Brakett series)がそれぞれ得られることがわかった。 1]ュードベリ(Johannes Rydberg: 1854~1919)とリッツ(Walter Ritz : 1878~ 赤外線領域のすべての発光線を説明できる次式を提案した。 1 こをかけると、放 ーの高い水素原 ると、 水素原子 デーー() ア=チーR/1 水素放電管からの発光スペクトルのすべての波長を説明できる,この式 (1-6)のもつ意味は一体何なのだろうか。以下,順にみていこう。 > n>0 いずれも整数 ここで,Rはリュードベリ定数(実験値R=1.09737 × 10' m-')である。 (1) ボーアの水素原子モデル ボーア(Niels Henrik David Bohr : 1885~1962)は, 1943年に水素の発光スペク ような3つ トルを説明する理論を提唱した。 プランクによるエネルギー量子の概念 16

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

ドブロイ波長についてなんですが 波長の整数倍nと量子数nが一致する理由ってありますか?

標準問題 子の速さを1,真空のクーロンの法則の比例定数を ko とすると, 軌道半径rはe, m, ko, v との間にはたらく静電気力を向心力として, 等速円運動をしていると考える。このときの電 を用いてア=ア] と表せる。 軌道の周の長さ 2πrは, 量子条件より, 正の整数(量子数) 20原 124 A) 必147.〈水素原子モデル〉 次の文中の「ア]から「カに適切な数式や数値を入れよ。 ボーアは水素原子の構造に関する次のようなモデルを提唱した。 n, プランク定数hおよびm, uを用いて, 2πr=_イ」と表せる。この式は,ド·プロイに よって物質波の考えが導入されて以降,「2πrが定常状態の電子の波長(ド· プロイ波長)の 整数倍である」と考えられるようになった。これらの関係から, 量子数nの定常状態の軌道 半径r,はe, m, ko, h, n, π を用いて, グカ=ウ」と表すことができる。n番目の定常状 態にある軌道上の電子の全エネルギー Enは, 電子の運動エネルギーと,静電気力による位 置エネルギー(無限遠を基準とする)の和より, e, m, ko, h, n, π を用いて, En=エ と表される。このように, ボーアは水素原子の中で定常状態にある電子は,とびとびのエネ ルギー準位をもつという仮説をたてた。 ボーアの水素原子モデルにおいて, 電子が n=1 の定常状態にあるときを基底状態, n>2 の定常状態にあるときを励起状態という。量子数nの励起状態にある電子は,きわめて短い 時間で量子数n'("'<n)の状態に移り,その差のエネルギーを光子として放出する。このと き,放出される光子の波長入は振動数条件から, 真空中の光の速さcおよび e, m, ko, h, n, n', π を用いて, ー%=Dオ]と表される。 水素原子の示す線スペクトルの観測結果から得られた輝線の波長入は,リュードベリ定数 Rを用いてー=Rー)の規則性をもつことが示されていた。 ボーアの水素原子モデ ルによるリュードベリ定数の計算結果は, すでに知られていたリュードベリ定数の値と高い 精度で一致し,水素原子のスペクトルを理論的に説明することに成功した。リュードベリ定 数 R=1.1×10'/m とすると, 水素原子の線スペクトルのうち, 可視光線領域 (3.8~7.8×10-7m)の輝線群の2番目に長い波長は, 有効数字2桁でカ 1 1 2 n Im と計算できる。 [20 九州工大 改]

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物性物理学の本を読んでいて、質問があります。 本では, 量子力学による1電子原子の電子状態の記述について 添付のように述べていて, (1.12)式までは良いのですが, 赤枠で囲ったところの式(1.13)の導出過程が知りたいです。 よろしくお願いいたします。

$1.2 1電子原子の電子状態 1 p° = 2me 2 a 1 V= 2m。 2m。(r+ r dr 原子においては,原子核を中心としてそのまわりの半径10-10m程度の領 の形となる。ここでAは次のような角度に関する微分演算子である。* 域を電子が運動している。原子の構造を理解するためには,この電子の振舞 1 sin 0 d0 1 を調べなくてはならない。まず最も単純な場合として,Ze の正電荷をもった A= - (sin 0 sin' 0 核のまわりを,1個の電子が運動している場合を考える。Z=1であればこ 1電子原子のハミルトニアンがこのように具体的に与えられた.このハミル れは水素原子そのものであり,Z =2であれば He* イオンということにな トニアンに対するシュレーディンガー方程式(1.9) は2階の微分方程式の形 る。 をしている。これを満たす解として波動関数T(r, 0, φ) が求まれば,1電 原子の質量のほとんどは核に集中しているので、そこを重心として座標の 子原子における電子の分布の様子がわかる。ところで,原子に属する電子の 原点にとってさしつかえなかろう。電子は -e の電荷をもち,核の正電荷 波動関数は,核から十分遠方(r→0)ではゼロに収束するはずである。こ Ze とクーロン相互作用をもつ。そのポテンシャルエネルギーは電子と核の のような境界条件の下で(1.9)式を考えると,電子のエネルギー固有値 E が 間の距離rに反比例し, 離散的な特定の値をとるときのみ解が存在する。これは量子力学系の顕著な Ze? V(r) = - 特徴である。 4TE0ア 最も低いエネルギー固有値を与える解は球対称で、次の形をしている。 である。* これは万有引力と同じ形をもつので,古典的に考えれば,地球が 17Z/2 ( exp(-) 太陽のまわりを回るように電子は核のまわりを楕円軌道を描いて回ると考え 『(r) = たくなる。しかしながら,このような極微の世界まで古典ニュートン力学が ただし,ここで そのまま成立するわけではない,電子の振舞を正しく理解することは,今世 4TEh An = mee? =0.529 A 紀初頭登場した量子力学をもってはじめて可能となった。量子力学によると, 電子の存在確率は波動関数 『(r)の絶対値の2乗に比例する。定常状態では 『(r)は次のシュレーディンガー方程式を満たすというのが量子力学の骨子 はボーア半径とよばれる。 である。 H V (r) = ET (r) ここで はハミルトニアンで,電子の運動エネルギーとポテンシャルエネ ルギーの和であり, 1 p°+ V(r) 2m。 H = の形をもつ。** 第2項のポテンシャル項は方向によらず,核からの距離のみ に依存するので,全体を極座標を用いて表した方が都合がよい。このとき, 第1項の運動エネルギーの部分は Eo = 8.8542 × 10-12 F/m は真空の誘電率。 m。は電子の質量,p= - iAVは運動量オペレータである。ただし,▽はナプラと読 み,直交座標系では 定,立,えを直交する単位ペクトルとして、V= -+ の形をもつ微分演算子である。カ = h= 6.626× 10-4JSはプランク定数。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

量子力学、有限井戸型ポテンシャルの問題です。 (5)がわかりません。V_*=π^2hbar^2/8ma^2と求めました。

以下の問I、II に答えよ。ただし、プランク定数を 2mで割った定数をんとする。 I.1次元のポテンシャル中の質量mの粒子を量子カ学的に取り扱う。粒子の座標をとし、ポテ ンシャルをV(z)とする。aと %を正の定数として、図1のように| >«の領域でV(z)= % で|<』の領域でV(z) = 0のとき、V%の値を小さくしていったところ、V%<V,のときに東 縛状態が一つだけになった。 (1) 図2のようにV% が無限大のとき、すなわち ||>aの領域でV(z) が無限大で || Saの領 域でV(a) = 0のとき、基底状態のエネルギーおよび第1励起状態のエネルギーを求めよ。 (2) 図1のポテンシャルでV%> V,のとき、基底状態の波動関数および第1励起状態の波動関 数の概形を描け。 (3) 図1のポテンシャルでV%> V。のときを考え、基底状態のエネルギーと第1励起状態のエ ネルギーをそれぞれ Eo, E, とする。このポテンシャルを、図3のように、a<0の領域で はV(z) が無限大となるように変更する。変更後の系の基底状態のエネルギー Eを Eと EEのうちの必要なものを用いて表せ。 (4) V,を求めよ。 (5) 図4のように、|2| < 3a の領域および ||> 5a の領域でV(z) = V./2で3a< ||| < 5aの領 域でV(z) = 0のとき、束縛状態の数を答えよ。厳密に導出する必要はないが、根拠を簡 潔に記すこと。またすべての束縛状態の波動関数の概形をエネルギーが小さい順に描け。 V(2) V(2) V% * E ーa 0 a ーa 0 a 図1 図2 V(2) V(x) Vo Iv./2 0 a ー5a -3a 0 3a 5a 図3 図4

解決済み 回答数: 1
1/2