学年

教科

質問の種類

物理 大学生・専門学校生・社会人

量子力学・スピンハミルトニアンの時間発展について質問です。(1)〜(3)までは画像2枚目のように解いたのですが、(4)(5)の計算がとても煩雑になってしまいました。この方針で大丈夫なのでしょうか?また、(6)が分かりません。どのように考えればよいのでしょうか?

II. 図3のように番号;= 1,2,3で区別される3つのスピンがあり、それぞれ2軸方向に上向 きと下向きの2つの状態 |0);, [1}; をとることができる。2種類の相互作用 角,。を選択的に 切り替え、1番目と2番目のスピンの状態を3番目のスピンによって制御する。簡単のためプ ランク定数を2で割った定数んを1とし、相互作用白,白および時間tを無次元量として取 り扱う。 自。 ○ン 0 9 三 図3 ここで、1は恒等演算子、9, o9は番目のスピンの演算子,の行列表現である。各演 算子は10); = |0):, of° |1}; = -|1); を満たす。また、3つのスピンからなる状態を|1,0)|0}= |1);|0)2|0)s などと記すことにする。 (1) (),(o)°, of o) + ooを計算せよ。 (2) 9 を 10);, |1);に作用させた結果をそれぞれ示せ。 C○ (3) 白のもとでの時間発展演算子む(t) = exp(-8白t) = とーを白t)”が n! n=0 0(t) = cos° (t)i - sin° (t)a{)a£) + icos (t) sin (t)(o{) + )) を満たすことを示せ。ただし、一般に可換な演算子A, Bについて、e(4+B) - eáeb が成り 立つことに留意せよ。 (4) 白のもとで時間む、続いてのもとで時間tzだけ相互作用したときの時間発展は ()()= exp(-iHnt) exp(-iAt)と記述される。10,0)|0), I0,1)|0), |1,0) |0), |1, 1)|10) の4つの状態がひっ(n/4)0,(m/4) の時間発展をしたあとの状態をそれぞれ書き下せ。 次に、ある状態() = a|0,0) |0) + |1,1}10} (a, 8 は定数)を用意したところ、予期せぬ相互作 用により、1番目のスピンが微小回転してしまい、状態|)= VI-) + €)に変化し た。eの具体的な大きさは分からないが、状態|)をもとの状態」)に戻したい。 (5) 状態」)を問(4) のD2(T/4)ü,(T/4) によって時間発展させると、 Us(r/4)(r/4)) = \)) + i¢)10) という状態に変化した。1番目と2番目のスピンからなる状態|), o)をそれぞれ具体 的に書き下せ。 (6) 問(5) の状態に対し、3番目のスピンの測定をおこなうと、状態|)|1) と状態|o)|0)の いずれかが得られる。それぞれの状態に対してさらに個別にある演算子を作用させると、 微小回転量eの情報なしに状態 |) に戻せる。各状態について必要な演算子を答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物性物理学の本を読んでいて、質問があります。 本では, 量子力学による1電子原子の電子状態の記述について 添付のように述べていて, (1.12)式までは良いのですが, 赤枠で囲ったところの式(1.13)の導出過程が知りたいです。 よろしくお願いいたします。

$1.2 1電子原子の電子状態 1 p° = 2me 2 a 1 V= 2m。 2m。(r+ r dr 原子においては,原子核を中心としてそのまわりの半径10-10m程度の領 の形となる。ここでAは次のような角度に関する微分演算子である。* 域を電子が運動している。原子の構造を理解するためには,この電子の振舞 1 sin 0 d0 1 を調べなくてはならない。まず最も単純な場合として,Ze の正電荷をもった A= - (sin 0 sin' 0 核のまわりを,1個の電子が運動している場合を考える。Z=1であればこ 1電子原子のハミルトニアンがこのように具体的に与えられた.このハミル れは水素原子そのものであり,Z =2であれば He* イオンということにな トニアンに対するシュレーディンガー方程式(1.9) は2階の微分方程式の形 る。 をしている。これを満たす解として波動関数T(r, 0, φ) が求まれば,1電 原子の質量のほとんどは核に集中しているので、そこを重心として座標の 子原子における電子の分布の様子がわかる。ところで,原子に属する電子の 原点にとってさしつかえなかろう。電子は -e の電荷をもち,核の正電荷 波動関数は,核から十分遠方(r→0)ではゼロに収束するはずである。こ Ze とクーロン相互作用をもつ。そのポテンシャルエネルギーは電子と核の のような境界条件の下で(1.9)式を考えると,電子のエネルギー固有値 E が 間の距離rに反比例し, 離散的な特定の値をとるときのみ解が存在する。これは量子力学系の顕著な Ze? V(r) = - 特徴である。 4TE0ア 最も低いエネルギー固有値を与える解は球対称で、次の形をしている。 である。* これは万有引力と同じ形をもつので,古典的に考えれば,地球が 17Z/2 ( exp(-) 太陽のまわりを回るように電子は核のまわりを楕円軌道を描いて回ると考え 『(r) = たくなる。しかしながら,このような極微の世界まで古典ニュートン力学が ただし,ここで そのまま成立するわけではない,電子の振舞を正しく理解することは,今世 4TEh An = mee? =0.529 A 紀初頭登場した量子力学をもってはじめて可能となった。量子力学によると, 電子の存在確率は波動関数 『(r)の絶対値の2乗に比例する。定常状態では 『(r)は次のシュレーディンガー方程式を満たすというのが量子力学の骨子 はボーア半径とよばれる。 である。 H V (r) = ET (r) ここで はハミルトニアンで,電子の運動エネルギーとポテンシャルエネ ルギーの和であり, 1 p°+ V(r) 2m。 H = の形をもつ。** 第2項のポテンシャル項は方向によらず,核からの距離のみ に依存するので,全体を極座標を用いて表した方が都合がよい。このとき, 第1項の運動エネルギーの部分は Eo = 8.8542 × 10-12 F/m は真空の誘電率。 m。は電子の質量,p= - iAVは運動量オペレータである。ただし,▽はナプラと読 み,直交座標系では 定,立,えを直交する単位ペクトルとして、V= -+ の形をもつ微分演算子である。カ = h= 6.626× 10-4JSはプランク定数。

解決済み 回答数: 1
1/2